These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9605345)

  • 41. Relation between cognition and neural connection from injured cingulum to brainstem cholinergic nuclei in chronic patients with traumatic brain injury.
    Yoo JS; Kim OL; Kim SH; Kim MS; Jang SH
    Brain Inj; 2014; 28(10):1257-61. PubMed ID: 24926814
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholinergic activity in hippocampus in chronic alcoholism.
    Nordberg A; Larsson C; Perdahl E; Winblad B
    Drug Alcohol Depend; 1982 Dec; 10(4):333-44. PubMed ID: 7166143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Postmortem studies in schizophrenia.
    Powchik P; Davidson M; Haroutunian V; Gabriel SM; Purohit DP; Perl DP; Harvey PD; Davis KL
    Schizophr Bull; 1998; 24(3):325-41. PubMed ID: 9718627
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The cholinergic synapses of the associative temporal area of the neocortex in the realization of cognitive functions].
    Teriaeva NB; Mukhin EI
    Fiziol Zh Im I M Sechenova; 1993 Sep; 79(9):18-25. PubMed ID: 8268988
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Exciting your neurons to death: can we prevent cell loss after brain injury?
    Duhaime AC
    Pediatr Neurosurg; 1994; 21(2):117-22; discussion 123. PubMed ID: 7986742
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Choline acetyltransferase (ChAT) activity differs in right and left human temporal lobes.
    Amaducci L; Sorbi S; Albanese A; Gainotti G
    Neurology; 1981 Jul; 31(7):799-805. PubMed ID: 7195501
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Behavioral correlates of presynaptic events in the cholinergic neurotransmitter system.
    Russell RW
    Prog Drug Res; 1988; 32():43-130. PubMed ID: 2905821
    [No Abstract]   [Full Text] [Related]  

  • 48. Marked alterations in the cellular localisation and levels of apolipoprotein E following acute subdural haematoma in rat.
    Horsburgh K; Fitzpatrick M; Nilsen M; Nicoll JA
    Brain Res; 1997 Jul; 763(1):103-10. PubMed ID: 9272834
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pain after cortical injury relieved by electrical stimulation of the internal capsule.
    Fields HL; Adams JE
    Brain; 1974 Mar; 97(1):169-78. PubMed ID: 4434168
    [No Abstract]   [Full Text] [Related]  

  • 50. Brain-injury recovery may need cholinergic system.
    Senior K
    Lancet Neurol; 2005 Jun; 4(6):336-7. PubMed ID: 15931731
    [No Abstract]   [Full Text] [Related]  

  • 51. Effect of brain injury on social adaptability. Longitudinal study on frequency of criminality.
    Virkkunen M; Nuutila A; Huusko S
    Acta Psychiatr Scand; 1976 Mar; 53(3):168-72. PubMed ID: 1274641
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cognitive Control, the Anterior Cingulate, and Nicotinic Receptors: A Case of Heterozygote Advantage.
    Smucny J
    J Neurosci; 2018 Jan; 38(2):257-259. PubMed ID: 29321144
    [No Abstract]   [Full Text] [Related]  

  • 53. Choline acetylase activity in ocular tissues.
    deROETTH A
    Arch Ophthal; 1950 May; 43(5):849-52. PubMed ID: 15414083
    [No Abstract]   [Full Text] [Related]  

  • 54. Enhancing cognitive recovery in chronic traumatic brain injury through simultaneous allosteric modulation of α7 nicotinic acetylcholine and α5 GABA
    Balleste AF; Sangadi A; Titus DJ; Johnstone T; Hogenkamp D; Gee KW; Atkins CM
    Exp Neurol; 2024 Sep; 379():114879. PubMed ID: 38942266
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intranasal human-recombinant NGF administration improves outcome in children with post-traumatic unresponsive wakefulness syndrome.
    Gatto A; Capossela L; Conti G; Eftimiadi G; Ferretti S; Manni L; Curatola A; Graglia B; Di Sarno L; Calcagni ML; Di Giuda D; Cecere S; Romeo DM; Soligo M; Picconi E; Piastra M; Della Marca G; Staccioli S; Ruggiero A; Cocciolillo F; Pulitanò S; Chiaretti A
    Biol Direct; 2023 Oct; 18(1):61. PubMed ID: 37789391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mouse Nerve Growth Factor Injection and Progression Rate in Patients With Amyotrophic Lateral Sclerosis: An Observational Study.
    Li JT; Dong SQ; Qian T; Yang WB; Chen XJ
    Front Neurol; 2022; 13():829569. PubMed ID: 35250834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disruption of basal forebrain cholinergic neurons after traumatic brain injury does not compromise environmental enrichment-mediated cognitive benefits.
    Moschonas EH; Leary JB; Memarzadeh K; Bou-Abboud CE; Folweiler KA; Monaco CM; Cheng JP; Kline AE; Bondi CO
    Brain Res; 2021 Jan; 1751():147175. PubMed ID: 33121921
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury.
    Thomasy HE; Febinger HY; Ringgold KM; Gemma C; Opp MR
    Neurobiol Sleep Circadian Rhythms; 2017 Jan; 2():71-84. PubMed ID: 31236496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. (-)-Phenserine Ameliorates Contusion Volume, Neuroinflammation, and Behavioral Impairments Induced by Traumatic Brain Injury in Mice.
    Hsueh SC; Lecca D; Greig NH; Wang JY; Selman W; Hoffer BJ; Miller JP; Chiang YH
    Cell Transplant; 2019; 28(9-10):1183-1196. PubMed ID: 31177840
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hypocretin Mediates Sleep and Wake Disturbances in a Mouse Model of Traumatic Brain Injury.
    Thomasy HE; Opp MR
    J Neurotrauma; 2019 Mar; 36(5):802-814. PubMed ID: 30136622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.