BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 9605348)

  • 1. Increased free radical production due to subdural hematoma in the rat: effect of increased inspired oxygen fraction.
    Doppenberg EM; Rice MR; Di X; Young HF; Woodward JJ; Bullock R
    J Neurotrauma; 1998 May; 15(5):337-47. PubMed ID: 9605348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tempol, a novel stable nitroxide, reduces brain damage and free radical production, after acute subdural hematoma in the rat.
    Kwon TH; Chao DL; Malloy K; Sun D; Alessandri B; Bullock MR
    J Neurotrauma; 2003 Apr; 20(4):337-45. PubMed ID: 12866813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reducing hemoglobin oxygen affinity does not increase hydroxyl radicals after acute subdural hematoma in the rat.
    Doppenberg EM; Rice MR; Alessandri B; Qian Y; Di X; Bullock R
    J Neurotrauma; 1999 Feb; 16(2):123-33. PubMed ID: 10098957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain hydroxyl radical generation in acute experimental head injury.
    Hall ED; Andrus PK; Yonkers PA
    J Neurochem; 1993 Feb; 60(2):588-94. PubMed ID: 8380437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of inspired oxygen on glucose-lactate dynamics after subdural hematoma in the rat.
    Reinert M; Alessandri B; Seiler R; Bullock R
    Neurol Res; 2002 Sep; 24(6):601-6. PubMed ID: 12238629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate release and free radical production following brain injury: effects of posttraumatic hypothermia.
    Globus MY; Alonso O; Dietrich WD; Busto R; Ginsberg MD
    J Neurochem; 1995 Oct; 65(4):1704-11. PubMed ID: 7561868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of microdialysis for in-vivo monitoring of hydroxyl free-radical generation in the rat.
    Obata T
    J Pharm Pharmacol; 1997 Jul; 49(7):724-30. PubMed ID: 9255719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating hydroxyl radical content in rat brain using systemic and intraventricular salicylate: impact of methamphetamine.
    Giovanni A; Liang LP; Hastings TG; Zigmond MJ
    J Neurochem; 1995 Apr; 64(4):1819-25. PubMed ID: 7891110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anoxia/reoxygenation induces hydroxyl free radical formation in brain microvessels.
    Grammas P; Liu GJ; Wood K; Floyd RA
    Free Radic Biol Med; 1993 May; 14(5):553-7. PubMed ID: 8394270
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of salicylate hydroxylation to detect hydroxyl radical generation in ischemic and traumatic brain injury. Reversal by tirilazad mesylate (U-74006F).
    Althaus JS; Andrus PK; Williams CM; VonVoigtlander PF; Cazers AR; Hall ED
    Mol Chem Neuropathol; 1993 Oct; 20(2):147-62. PubMed ID: 8297419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Delayed hyperoxic ventilation attenuates oxygen-induced free radical accumulation during early reperfusion after global brain ischemia.
    Wang Y; Yuan L; Liu P; Zhao M
    Neuroreport; 2015 Feb; 26(3):131-8. PubMed ID: 25569795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of free radical activity during transient global ischemia and recirculation: effects of intraischemic brain temperature modulation.
    Globus MY; Busto R; Lin B; Schnippering H; Ginsberg MD
    J Neurochem; 1995 Sep; 65(3):1250-6. PubMed ID: 7643104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats.
    Dahchour A; Lallemand F; Ward RJ; De Witte P
    Eur J Pharmacol; 2005 Sep; 520(1-3):51-8. PubMed ID: 16135364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of alpha-phenyl-tert-butyl nitrone (PBN) on free radical formation in transient focal ischaemia measured by microdialysis and 3,4-dihydroxybenzoate formation.
    Gidö G; Cronberg T; Wieloch T
    Acta Physiol Scand; 2000 Feb; 168(2):277-85. PubMed ID: 10712565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hyperbaric oxygenation alleviates MCAO-induced brain injury and reduces hydroxyl radical formation and glutamate release.
    Yang ZJ; Xie Y; Bosco GM; Chen C; Camporesi EM
    Eur J Appl Physiol; 2010 Feb; 108(3):513-22. PubMed ID: 19851780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydroxyl radicals detected via brain microdialysis in rats breathing air and during hyperbaric oxygen convulsions.
    Amiridze N; Dang Y; Brown OR
    Redox Rep; 1999; 4(4):165-70. PubMed ID: 10658821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of ferrous iron on the generation of hydroxyl free radicals by liver microdialysis perfusion of salicylate.
    Obata T; Hosokawa H; Yamanaka Y
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1993 Nov; 106(3):629-34. PubMed ID: 7905800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for formation of hydroxyl radicals during reperfusion after global cerebral ischaemia in rats using salicylate trapping and microdialysis.
    Christensen T; Bruhn T; Balchen T; Diemer NH
    Neurobiol Dis; 1994 Dec; 1(3):131-8. PubMed ID: 9173992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence of hydroxyl free radical generation by calcium overload in rat myocardium.
    Obata T; Tamura M; Yamanaka Y
    J Pharm Pharmacol; 1997 Aug; 49(8):787-90. PubMed ID: 9379357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of hydroxyl radicals and their disassociation from myocardial cell injury during calcium paradox.
    Duncan E; Onodera T; Ashraf M
    Free Radic Biol Med; 1992; 12(1):11-8. PubMed ID: 1311280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.