These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 9605534)

  • 1. The thalamo-hyperstriatal system is established by the time of hatching in chicks (Gallus gallus): a cholera toxin B subunit study.
    Wu CC; Karten HJ
    Vis Neurosci; 1998; 15(2):349-58. PubMed ID: 9605534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livia).
    Gamlin PD; Cohen DH
    J Comp Neurol; 1988 Mar; 269(1):18-46. PubMed ID: 3361002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extratelencephalic projections of the avian visual Wulst. A quantitative autoradiographic study in the pigeon Columbia livia.
    Miceli D; Repérant J; Villalobos J; Dionne L
    J Hirnforsch; 1987; 28(1):45-57. PubMed ID: 3598175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Projections from the accessory optic system and pretectum to the dorsolateral thalamus in the pigeon (Columbia livia): a study using both anteretrograde and retrograde tracers.
    Wylie DR; Glover RG; Lau KL
    J Comp Neurol; 1998 Feb; 391(4):456-69. PubMed ID: 9486825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ontogeny of the tectorotundal pathway in chicks (Gallus gallus): birthdating and pathway tracing study.
    Wu CC; Russell RM; Karten HJ
    J Comp Neurol; 2000 Jan; 417(1):115-32. PubMed ID: 10660892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Projections of the dorsolateral anterior complex and adjacent thalamic nuclei upon the visual Wulst in the pigeon.
    Miceli D; Marchand L; Repérant J; Rio JP
    Brain Res; 1990 Jun; 518(1-2):317-23. PubMed ID: 1697211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transport rate of cholera toxin B subunit in the retinofugal pathways of the chick.
    Wu CC; Russell RM; Karten HJ
    Neuroscience; 1999; 92(2):665-76. PubMed ID: 10408614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical localization of nicotinic acetylcholine receptor subunits in the mesencephalon and diencephalon of the chick (Gallus gallus).
    Britto LR; Keyser KT; Lindstrom JM; Karten HJ
    J Comp Neurol; 1992 Mar; 317(4):325-40. PubMed ID: 1578001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of calcium-binding proteins in the pigeon visual thalamic centers and related pretectal and mesencephalic nuclei. Phylogenetic and functional determinants.
    Belekhova MG; Chudinova TV; Rio JP; Tostivint H; Vesselkin NP; Kenigfest NB
    Brain Res; 2016 Jan; 1631():165-93. PubMed ID: 26638835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuropeptide Y innervation of retinorecipient layers of chick optic tectum.
    Székeley AD; Csillag A; Görcs T
    J Neurocytol; 1992 Feb; 21(2):148-56. PubMed ID: 1560251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An immunocytochemical analysis of the lateral geniculate complex in the pigeon (Columba livia).
    Güntürkün O; Karten HJ
    J Comp Neurol; 1991 Dec; 314(4):721-49. PubMed ID: 1687743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pretectal and tectal projections to the homologue of the dorsal lateral geniculate nucleus in the pigeon: an anterograde and retrograde tracing study with cholera toxin conjugated to horseradish peroxidase.
    Wild JM
    Brain Res; 1989 Feb; 479(1):130-7. PubMed ID: 2924142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An experimental study of the retinal projections of the European eel (Anguilla anguilla), carried out at the catadromic migratory silver stage.
    Medina M; Le Belle N; Repérant J; Rio JP; Ward R
    J Hirnforsch; 1990; 31(4):467-80. PubMed ID: 2254656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avian somatosensory system: II. Ascending projections of the dorsal column and external cuneate nuclei in the pigeon.
    Wild JM
    J Comp Neurol; 1989 Sep; 287(1):1-18. PubMed ID: 2794122
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern of organization of primary visual pathways in the European lizard Podarcis sicula Rafinesque.
    Casini G; Petrini P; Foà A; Bagnoli P
    J Hirnforsch; 1993; 34(3):361-74. PubMed ID: 7505790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GABA-like immunoreactivity of neurons in the chicken diencephalon and mesencephalon.
    Granda RH; Crossland WJ
    J Comp Neurol; 1989 Sep; 287(4):455-69. PubMed ID: 2794130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus.
    Murakami T; Morita Y; Ito H
    J Comp Neurol; 1983 May; 216(2):115-31. PubMed ID: 6863598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Anatomical study of the afferent pathways of the rostral telencephalon in the Gallus domesticus chick].
    Miceli D; Peyrichoux J; Repérant J; Weidner C
    J Hirnforsch; 1980; 21(6):627-46. PubMed ID: 7229347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Projections to the midbrain tectum in Salamandra salamandra L.
    Finkenstädt T; Ebbesson SO; Ewert JP
    Cell Tissue Res; 1983; 234(1):39-55. PubMed ID: 6640621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The primary visual system of flatfish: an evolutionary perspective.
    Medina M; Repérant J; Ward R; Rio JP; Lemire M
    Anat Embryol (Berl); 1993 Feb; 187(2):167-91. PubMed ID: 8238965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.