These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 9605545)
1. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala. Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545 [TBL] [Abstract][Full Text] [Related]
2. Application potency of engineered G159 mutants on P1 substrate pocket of subtilisin YaB as improved meat tenderizers. Yeh CM; Yang MC; Tsai YC J Agric Food Chem; 2002 Oct; 50(21):6199-204. PubMed ID: 12358502 [TBL] [Abstract][Full Text] [Related]
3. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability. Fuchita N; Arita S; Ikuta J; Miura M; Shimomura K; Motoshima H; Watanabe K Biochim Biophys Acta; 2012 Apr; 1824(4):620-6. PubMed ID: 22326746 [TBL] [Abstract][Full Text] [Related]
4. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates. Ballinger MD; Tom J; Wells JA Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837 [TBL] [Abstract][Full Text] [Related]
5. Conversion of the cleavage specificity of subtilisin YaB on oxidized insulin chains to an elastase-like specificity by replacement of Gly124 with Ala. Mei HC; Li YF; Hsu CC; Tsai YC; Takagi H Biosci Biotechnol Biochem; 2003 Jul; 67(7):1601-4. PubMed ID: 12913311 [TBL] [Abstract][Full Text] [Related]
6. Engineering a novel specificity in subtilisin BPN'. Rheinnecker M; Baker G; Eder J; Fersht AR Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130 [TBL] [Abstract][Full Text] [Related]
7. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'. Braxton S; Wells JA Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966 [TBL] [Abstract][Full Text] [Related]
8. Random mutagenesis into the conserved Gly154 of subtilisin E: isolation and characterization of the revertant enzymes. Takagi H; Yamamoto M; Ohtsu I; Nakamori S Protein Eng; 1998 Dec; 11(12):1205-10. PubMed ID: 9930669 [TBL] [Abstract][Full Text] [Related]
9. Improvement of a useful enzyme (subtilisin BPN') by an experimental evolution system. Tange T; Taguchi S; Kojima S; Miura K; Momose H Appl Microbiol Biotechnol; 1994 Apr; 41(2):239-44. PubMed ID: 7764834 [TBL] [Abstract][Full Text] [Related]
10. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157 [TBL] [Abstract][Full Text] [Related]
11. Designing subtilisin BPN' to cleave substrates containing dibasic residues. Ballinger MD; Tom J; Wells JA Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915 [TBL] [Abstract][Full Text] [Related]
12. Improved autoprocessing efficiency of mutant subtilisins E with altered specificity by engineering of the pro-region. Takahashi M; Hasuura Y; Nakamori S; Takagi H J Biochem; 2001 Jul; 130(1):99-106. PubMed ID: 11432785 [TBL] [Abstract][Full Text] [Related]
13. N-anthraniloyl-Ala-Ala-Phe-4-nitroanilide, a highly sensitive substrate for subtilisins. Stambolieva NA; Ivanov IP; Yomtova VM Arch Biochem Biophys; 1992 May; 294(2):703-6. PubMed ID: 1567226 [TBL] [Abstract][Full Text] [Related]
14. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of subtilisin BPN' by reaction site P1 mutants of Streptomyces subtilisin inhibitor. Kojima S; Nishiyama Y; Kumagai I; Miura K J Biochem; 1991 Mar; 109(3):377-82. PubMed ID: 1908859 [TBL] [Abstract][Full Text] [Related]
16. Investigating the s-2 subsite selectivity of alkaline proteases in hydrolysis of diastereo-peptide esters and molecular-modeling interpretation. Chen ST; Tu CC; Chen SY; Huang HC; Wang KT Bioorg Med Chem; 1993 Nov; 1(5):361-7. PubMed ID: 8081866 [TBL] [Abstract][Full Text] [Related]
18. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. You L; Arnold FH Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906 [TBL] [Abstract][Full Text] [Related]
19. Mutational analysis of the autoprocessing site of subtilisin YaB-G124A. Chang YS; Liaw SH; Mei HC; Hsu CC; Wu CY; Tsai YC Biochem Biophys Res Commun; 2002 Feb; 291(1):165-9. PubMed ID: 11829478 [TBL] [Abstract][Full Text] [Related]
20. Construction of novel subtilisin E with high specificity, activity and productivity through multiple amino acid substitutions. Takagi H; Ohtsu I; Nakamori S Protein Eng; 1997 Sep; 10(9):985-9. PubMed ID: 9464562 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]