These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
661 related articles for article (PubMed ID: 9605561)
1. Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography. McIntyre CA; Williams BC; Lindsay RM; McKnight JA; Hadoke PW Br J Pharmacol; 1998 Apr; 123(8):1555-60. PubMed ID: 9605561 [TBL] [Abstract][Full Text] [Related]
2. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
3. Microvascular versus macrovascular dysfunction in type 2 diabetes: differences in contractile responses to endothelin-1. Sachidanandam K; Harris A; Hutchinson J; Ergul A Exp Biol Med (Maywood); 2006 Jun; 231(6):1016-21. PubMed ID: 16741041 [TBL] [Abstract][Full Text] [Related]
4. High-salt diet and responses of the pressurized mesenteric artery of the dog to noradrenaline and acetylcholine. Sofola O; Knill A; Myers D; Hainsworth R; Drinkhill M Clin Exp Pharmacol Physiol; 2004 Oct; 31(10):696-9. PubMed ID: 15554910 [TBL] [Abstract][Full Text] [Related]
5. Determination of an optimal axial-length tension for the study of isolated resistance arteries on a pressure myograph. Coats P; Hillier C Exp Physiol; 1999 Nov; 84(6):1085-94. PubMed ID: 10564705 [TBL] [Abstract][Full Text] [Related]
6. Glycyrrhetinic acid-sensitive mechanism does not make a major contribution to non-prostanoid, non-nitric oxide mediated endothelium-dependent relaxation of rat mesenteric artery in response to acetylcholine. Tanaka Y; Otsuka A; Tanaka H; Shigenobu K Res Commun Mol Pathol Pharmacol; 1999 Mar; 103(3):227-39. PubMed ID: 10509734 [TBL] [Abstract][Full Text] [Related]
7. Increased contractility to noradrenaline and normal endothelial function in mesenteric small arteries from the Goto-Kakizaki rat model of type 2 diabetes. Brondum E; Kold-Petersen H; Nilsson H; Flyvbjerg A; Aalkjaer C J Physiol Sci; 2008 Oct; 58(5):333-9. PubMed ID: 18838050 [TBL] [Abstract][Full Text] [Related]
8. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries. Lacy PS; Pilkington G; Hanvesakul R; Fish HJ; Boyle JP; Thurston H Br J Pharmacol; 2000 Feb; 129(3):605-11. PubMed ID: 10711361 [TBL] [Abstract][Full Text] [Related]
9. Reduced responsiveness of rat mesenteric resistance artery smooth muscle to phenylephrine and calcium following myocardial infarction. Stassen FR; Willemsen MJ; Janssen GM; Fazzi GE; Schiffers PM; Smits JF; De Mey JG Br J Pharmacol; 1997 Apr; 120(8):1505-12. PubMed ID: 9113372 [TBL] [Abstract][Full Text] [Related]
10. NO and KATP channels underlie endotoxin-induced smooth muscle hyperpolarization in rat mesenteric resistance arteries. Wu CC; Chen SJ; Garland CJ Br J Pharmacol; 2004 Jun; 142(3):479-84. PubMed ID: 15148259 [TBL] [Abstract][Full Text] [Related]
11. Functional alterations of mesenteric small resistance arteries in Milan hypertensive and normotensive rats. Rizzoni D; Castellano M; Porteri E; Giacchè M; Ferrari P; Cusi D; De Ciuceis C; Boari GE; Rosei EA Hypertens Res; 2009 Jul; 32(7):581-5. PubMed ID: 19407819 [TBL] [Abstract][Full Text] [Related]
12. The effect of morphine in rat small mesenteric arteries. Ozdem SS; Batu O; Tayfun F; Yalcin O; Meiselman HJ; Baskurt OK Vascul Pharmacol; 2005 Jun; 43(1):56-61. PubMed ID: 15939674 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of superoxide anion-mediated impairment of endothelium by treatment with luteolin and apigenin in rat mesenteric artery. Ma X; Li YF; Gao Q; Ye ZG; Lu XJ; Wang HP; Jiang HD; Bruce IC; Xia Q Life Sci; 2008 Jul; 83(3-4):110-7. PubMed ID: 18558413 [TBL] [Abstract][Full Text] [Related]
14. Impairment of smooth muscle function of rat thoracic aorta in an endothelium-independent manner by long-term administration of N(G)-nitro-L-arginine methyl ester. López RM; Ortíz CS; Ruíz A; Vélez JM; Castillo C; Castillo EF Fundam Clin Pharmacol; 2004 Dec; 18(6):669-77. PubMed ID: 15548238 [TBL] [Abstract][Full Text] [Related]
15. The mechanisms of the direct action of etomidate on vascular reactivity in rat mesenteric resistance arteries. Shirozu K; Akata T; Yoshino J; Setoguchi H; Morikawa K; Hoka S Anesth Analg; 2009 Feb; 108(2):496-507. PubMed ID: 19151278 [TBL] [Abstract][Full Text] [Related]
16. Halothane does not protect against vascular injury in isolated cerebral and mesenteric arteries. Ogawa K; Tokinaga Y; Iwahashi S; Mizumoto K; Hatano Y Can J Anaesth; 2005 Oct; 52(8):870-7. PubMed ID: 16189341 [TBL] [Abstract][Full Text] [Related]
17. Heterogeneity of endothelium-dependent vasodilation in pressurized cerebral and small mesenteric resistance arteries of the rat. Lagaud GJ; Skarsgard PL; Laher I; van Breemen C J Pharmacol Exp Ther; 1999 Aug; 290(2):832-9. PubMed ID: 10411599 [TBL] [Abstract][Full Text] [Related]
18. The time-of-day variation in vascular smooth muscle contractility depends on a nitric oxide signalling pathway. Denniff M; Turrell HE; Vanezis A; Rodrigo GC J Mol Cell Cardiol; 2014 Jan; 66():133-40. PubMed ID: 24262337 [TBL] [Abstract][Full Text] [Related]
19. The influence of chronic inhibition of nitric oxide synthesis on contractile and relaxant properties of rat carotid and mesenteric arteries. Heijenbrok FJ; Mathy MJ; Pfaffendorf M; van Zwieten PA Naunyn Schmiedebergs Arch Pharmacol; 2000 Dec; 362(6):504-11. PubMed ID: 11138842 [TBL] [Abstract][Full Text] [Related]
20. Evidence for specific regional patterns of responses to different vasoconstrictors and vasodilators in sheep isolated pulmonary arteries and veins. Kemp BK; Smolich JJ; Cocks TM Br J Pharmacol; 1997 Jun; 121(3):441-50. PubMed ID: 9179385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]