These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1081 related articles for article (PubMed ID: 9605568)
21. Apamin-sensitive, non-nitric oxide (NO) endothelium-dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+. Drummond GR; Selemidis S; Cocks TM Br J Pharmacol; 2000 Feb; 129(4):811-9. PubMed ID: 10683206 [TBL] [Abstract][Full Text] [Related]
22. Characterization and modulation of EDHF-mediated relaxations in the rat isolated superior mesenteric arterial bed. McCulloch AI; Bottrill FE; Randall MD; Hiley CR Br J Pharmacol; 1997 Apr; 120(8):1431-8. PubMed ID: 9113362 [TBL] [Abstract][Full Text] [Related]
23. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F; Dusting GJ Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [TBL] [Abstract][Full Text] [Related]
24. Involvement of ATP in the non-adrenergic non-cholinergic inhibitory neurotransmission of lamb isolated coronary small arteries. Simonsen U; García-Sacristán A; Prieto D Br J Pharmacol; 1997 Feb; 120(3):411-20. PubMed ID: 9031744 [TBL] [Abstract][Full Text] [Related]
25. Role of potassium channels in the nitrergic nerve stimulation-induced vasodilatation in the guinea-pig isolated basilar artery. Jiang F; Li CG; Rand MJ Br J Pharmacol; 1998 Jan; 123(1):106-12. PubMed ID: 9484860 [TBL] [Abstract][Full Text] [Related]
26. Involvement of nitric oxide in the non-adrenergic non-cholinergic neurotransmission of horse deep penile arteries: role of charybdotoxin-sensitive K(+)-channels. Simonsen U; Prieto D; Sánez de Tejada I; García-Sacristán A Br J Pharmacol; 1995 Nov; 116(6):2582-90. PubMed ID: 8590974 [TBL] [Abstract][Full Text] [Related]
27. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
28. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization. Wallerstedt SM; Bodelsson M Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094 [TBL] [Abstract][Full Text] [Related]
29. Involvement of a glibenclamide-sensitive mechanism in the nitrergic neurotransmission of the pig intravesical ureter. Hernández M; Prieto D; Orensanz LM; Barahona MV; Jiménez-Cidre M; Rivera L; García-Sacristán A; Simonsen U Br J Pharmacol; 1997 Feb; 120(4):609-16. PubMed ID: 9051298 [TBL] [Abstract][Full Text] [Related]
30. Mechanisms underlying endothelium-dependent, nitric oxide- and prostanoid-independent relaxation in monkey and dog coronary arteries. Fujioka H; Ayajiki K; Shinozaki K; Toda N; Okamura T Naunyn Schmiedebergs Arch Pharmacol; 2002 Nov; 366(5):488-95. PubMed ID: 12382080 [TBL] [Abstract][Full Text] [Related]
31. Characterization of NS 2028 as a specific inhibitor of soluble guanylyl cyclase. Olesen SP; Drejer J; Axelsson O; Moldt P; Bang L; Nielsen-Kudsk JE; Busse R; Mülsch A Br J Pharmacol; 1998 Jan; 123(2):299-309. PubMed ID: 9489619 [TBL] [Abstract][Full Text] [Related]
33. A comparison of EDHF-mediated and anandamide-induced relaxations in the rat isolated mesenteric artery. White R; Hiley CR Br J Pharmacol; 1997 Dec; 122(8):1573-84. PubMed ID: 9422801 [TBL] [Abstract][Full Text] [Related]
34. Comparison of the vasodilatory effects of bradykinin in isolated dog renal arteries and in buffer-perfused dog kidneys. Malomvölgyi B; Hadházy P; Tekes K; Koltai MZ; Pogátsa G Acta Physiol Hung; 1996; 84(1):9-18. PubMed ID: 8993670 [TBL] [Abstract][Full Text] [Related]
35. Differential mechanisms for insulin-induced relaxations in mouse posterior tibial arteries and main mesenteric arteries. Qu D; Liu J; Lau CW; Huang Y Vascul Pharmacol; 2014 Dec; 63(3):173-7. PubMed ID: 25446161 [TBL] [Abstract][Full Text] [Related]
36. Endothelium dependent relaxation in rabbit genital resistance arteries is predominantly mediated by endothelial-derived hyperpolarizing factor in females and nitric oxide in males. Morton JS; Jackson VM; Daly CJ; McGrath JC J Urol; 2007 Feb; 177(2):786-91. PubMed ID: 17222682 [TBL] [Abstract][Full Text] [Related]
37. Involvement of voltage-dependent potassium channels in the EDHF-mediated relaxation of rat hepatic artery. Zygmunt PM; Edwards G; Weston AH; Larsson B; Högestätt ED Br J Pharmacol; 1997 May; 121(1):141-9. PubMed ID: 9146898 [TBL] [Abstract][Full Text] [Related]
38. Involvement of CYP3A-derived arachidonic acid metabolite(s) in responses to endothelium-derived K+ channel opening substance in monkey lingual artery. Ayajiki K; Okamura T; Fujioka H; Imaoka S; Funae Y; Toda N Br J Pharmacol; 1999 Oct; 128(3):802-8. PubMed ID: 10516665 [TBL] [Abstract][Full Text] [Related]
39. Evidence that different mechanisms underlie smooth muscle relaxation to nitric oxide and nitric oxide donors in the rabbit isolated carotid artery. Plane F; Wiley KE; Jeremy JY; Cohen RA; Garland CJ Br J Pharmacol; 1998 Apr; 123(7):1351-8. PubMed ID: 9579730 [TBL] [Abstract][Full Text] [Related]
40. Ischaemia enhances the role of Ca2+-activated K+ channels in endothelium-dependent and nitric oxide-mediated dilatation of the rat hindquarters vasculature. Woodman OL; Wongsawatkul O Clin Exp Pharmacol Physiol; 2004 Apr; 31(4):254-60. PubMed ID: 15053823 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]