BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 9605686)

  • 1. Acetylcholinesterase and butyrylcholinesterase are expressed in the spinal meninges of monkeys and pigs.
    Ummenhofer WC; Brown SM; Bernards CM
    Anesthesiology; 1998 May; 88(5):1259-65. PubMed ID: 9605686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epinephrine is metabolized by the spinal meninges of monkeys and pigs.
    Kern C; Mautz DS; Bernards CM
    Anesthesiology; 1995 Nov; 83(5):1078-81. PubMed ID: 7486158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphine and alfentanil permeability through the spinal dura, arachnoid, and pia mater of dogs and monkeys.
    Bernards CM; Hill HF
    Anesthesiology; 1990 Dec; 73(6):1214-9. PubMed ID: 2248398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Species- and concentration-dependent differences of acetyl- and butyrylcholinesterase sensitivity to physostigmine and neostigmine.
    Bitzinger DI; Gruber M; Tümmler S; Michels B; Bundscherer A; Hopf S; Trabold B; Graf BM; Zausig YA
    Neuropharmacology; 2016 Oct; 109():1-6. PubMed ID: 26772968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localization of mRNAs encoding acetylcholinesterase and butyrylcholinesterase in the rat spinal cord by nonradioactive in situ hybridization.
    Mis K; Mars T; Jevsek M; Brank M; Zajc-Kreft K; Grubic Z
    J Histochem Cytochem; 2003 Dec; 51(12):1633-44. PubMed ID: 14623931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of spinal cord and meningeal tissues.
    Ramo NL; Troyer KL; Puttlitz CM
    Acta Biomater; 2018 Jul; 75():253-262. PubMed ID: 29852238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enkephalin-degrading enzymes and angiotensin-converting enzyme in human and rat meninges.
    Zajac JM; Charnay Y; Soleilhic JM; Sales N; Roques BP
    FEBS Lett; 1987 May; 216(1):118-22. PubMed ID: 3034668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tensile mechanical properties of the cervical, thoracic and lumbar porcine spinal meninges.
    Sudres P; Evin M; Wagnac E; Bailly N; Diotalevi L; Melot A; Arnoux PJ; Petit Y
    J Mech Behav Biomed Mater; 2021 Mar; 115():104280. PubMed ID: 33395616
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of acetylcholinesterase and butyrylcholinesterase by the organophosphorus insecticide methylparathion in the central nervous system of the golden hamster (Mesocricetus auratus).
    Hahn T; Ruhnke M; Luppa H
    Acta Histochem; 1991; 91(1):13-9. PubMed ID: 1801511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinesterase activity is similar in C3H/HeJ and A/J mice and does not account for their different bronchoconstrictor responsiveness.
    Bulut Y; Kleeberger SR; Hirshman CA
    Exp Lung Res; 1999; 25(5):367-78. PubMed ID: 10483521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N1phenethyl-norcymserine, a selective butyrylcholinesterase inhibitor, increases acetylcholine release in rat cerebral cortex: a comparison with donepezil and rivastigmine.
    Cerbai F; Giovannini MG; Melani C; Enz A; Pepeu G
    Eur J Pharmacol; 2007 Oct; 572(2-3):142-50. PubMed ID: 17643410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudocholinesterase-mediated hydrolysis is superior to neostigmine for reversal of mivacurium-induced paralysis in vitro.
    Yang HS; Goudsouzian N; Martyn JA
    Anesthesiology; 1996 Apr; 84(4):936-44. PubMed ID: 8638849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anatomy and Imaging of the Spinal Cord: An Overview.
    Hermes TA; Jarry VM; Reis F; Minatel E
    Semin Ultrasound CT MR; 2023 Oct; 44(5):400-407. PubMed ID: 37555687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ependyma and meninges of the spinal cord of the mouse. A light-and electron-microscopic study.
    Seitz R; Löhler J; Schwendemann G
    Cell Tissue Res; 1981; 220(1):61-72. PubMed ID: 7273132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of acetylcholine in human airways: role of butyrylcholinesterase.
    Norel X; Angrisani M; Labat C; Gorenne I; Dulmet E; Rossi F; Brink C
    Br J Pharmacol; 1993 Apr; 108(4):914-9. PubMed ID: 8485630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study.
    Nicholas DS; Weller RO
    J Neurosurg; 1988 Aug; 69(2):276-82. PubMed ID: 3392571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition and recovery of maternal and fetal cholinesterase enzymes following a single oral dose of chlorpyrifos in rats.
    Ashry KM; Abu-Qare AW; Saleem FR; Hussein YA; Hamza SM; Kishk AM; Abou-Donia MB
    Arch Toxicol; 2002 Feb; 76(1):30-9. PubMed ID: 11875622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholinesterase inhibitors proposed for treating dementia in Alzheimer's disease: selectivity toward human brain acetylcholinesterase compared with butyrylcholinesterase.
    Pacheco G; Palacios-Esquivel R; Moss DE
    J Pharmacol Exp Ther; 1995 Aug; 274(2):767-70. PubMed ID: 7636741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative enzymatic studies using ion-selective electrodes. The case of cholinesterases.
    Cuartero M; Pérez S; García MS; García-Cánovas F; Ortuño JA
    Talanta; 2018 Apr; 180():316-322. PubMed ID: 29332816
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.