BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9605969)

  • 1. Early stages of spindle formation and independence of chromosome and microtubule cycles in Haemanthus endosperm.
    Smirnova EA; Bajer AS
    Cell Motil Cytoskeleton; 1998; 40(1):22-37. PubMed ID: 9605969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus.
    Smirnova EA; Bajer AS
    Cell Motil Cytoskeleton; 1994; 27(3):219-33. PubMed ID: 8020108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The effect of low temperature on the microtubules in root meristem cells of spring and winter cultivars of wheat Triticum aestivum L].
    Lazareva EM; Chentsov IuS; Smirnova EA
    Tsitologiia; 2008; 50(7):597-612. PubMed ID: 18771175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibody against phosphorylated proteins (MPM-2) recognizes mitotic microtubules in endosperm cells of higher plant Haemanthus.
    Smirnova EA; Cox DL; Bajer AS
    Cell Motil Cytoskeleton; 1995; 31(1):34-44. PubMed ID: 7553900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of organelles in the mitotic spindles of living cells: membrane and microtubule interactions.
    Waterman-Storer CM; Sanger JW; Sanger JM
    Cell Motil Cytoskeleton; 1993; 26(1):19-39. PubMed ID: 8106173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle membranes in mitosis and meiosis of the heteropteran insect Dysdercus intermedius. A study of the interrelationship of spindle architecture and the kinetic organization of chromosomes.
    Motzko D; Ruthmann A
    Eur J Cell Biol; 1984 Mar; 33(2):205-16. PubMed ID: 6714243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo.
    Bajer AS; Molè-Bajer J
    J Cell Biol; 1986 Jan; 102(1):263-81. PubMed ID: 3941154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-organization of MTOCs replaces centrosome function during acentrosomal spindle assembly in live mouse oocytes.
    Schuh M; Ellenberg J
    Cell; 2007 Aug; 130(3):484-98. PubMed ID: 17693257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in gamma-tubulin-depleted cells.
    Raynaud-Messina B; Mazzolini L; Moisand A; Cirinesi AM; Wright M
    J Cell Sci; 2004 Nov; 117(Pt 23):5497-507. PubMed ID: 15479719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of spindle-pole organization are influenced by kinetochore activity in mammalian cells.
    Manning AL; Compton DA
    Curr Biol; 2007 Feb; 17(3):260-5. PubMed ID: 17276919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-oocyte localization of MAD2 and its relationship with kinetochores, microtubules, and chromosomes in rat oocytes during meiosis.
    Zhang D; Ma W; Li YH; Hou Y; Li SW; Meng XQ; Sun XF; Sun QY; Wang WH
    Biol Reprod; 2004 Sep; 71(3):740-8. PubMed ID: 15115722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aster-like microtubule centers establish spindle polarity during interphase - Mitosis transition in higher plant cells.
    Schmit AC; Vantard M; de Mey J; Lambert AM
    Plant Cell Rep; 1983 Dec; 2(6):285-8. PubMed ID: 24258186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts.
    Heald R; Tournebize R; Blank T; Sandaltzopoulos R; Becker P; Hyman A; Karsenti E
    Nature; 1996 Aug; 382(6590):420-5. PubMed ID: 8684481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gamma-tubulin localization changes from discrete polar organizers to anastral spindles and phragmoplasts in mitosis of Marchantia polymorpha L.
    Brown RC; Lemmon BE; Horio T
    Protoplasma; 2004 Dec; 224(3-4):187-93. PubMed ID: 15614479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional localization and redistribution of F-actin in higher plant mitosis and cell plate formation.
    Molè-Bajer J; Bajer AS; Inoué S
    Cell Motil Cytoskeleton; 1988; 10(1-2):217-28. PubMed ID: 3180245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat shock alters centrosome organization leading to mitotic dysfunction and cell death.
    Vidair CA; Doxsey SJ; Dewey WC
    J Cell Physiol; 1993 Mar; 154(3):443-55. PubMed ID: 8436595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Motor protein KIFC5A interacts with Nubp1 and Nubp2, and is implicated in the regulation of centrosome duplication.
    Christodoulou A; Lederer CW; Surrey T; Vernos I; Santama N
    J Cell Sci; 2006 May; 119(Pt 10):2035-47. PubMed ID: 16638812
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Disruption of organization of mitotic microtubules in root meristem cells of Allium cepa induced by chloral hydrate].
    Smirnova EA; Svetlitskaia OM; Chentsov IuS
    Tsitologiia; 2002; 44(2):120-30. PubMed ID: 12053762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential roles for cohesin in kinetochore and spindle function in Xenopus egg extracts.
    Kenney RD; Heald R
    J Cell Sci; 2006 Dec; 119(Pt 24):5057-66. PubMed ID: 17158911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of centrosomes in spindle assembly and organization.
    Varmark H
    J Cell Biochem; 2004 Apr; 91(5):904-14. PubMed ID: 15034926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.