These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 9606732)

  • 41. Adaptive changes in sulfoglycolipids of kidney cell lines by culture in anisosmotic media.
    Niimura Y; Ishizuka I
    Biochim Biophys Acta; 1990 May; 1052(2):248-54. PubMed ID: 2334735
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of fibre on bile acid metabolism by human faecal bacteria in batch and continuous culture.
    Fadden K; Hill MJ; Owen RW
    Eur J Cancer Prev; 1997 Apr; 6(2):175-94. PubMed ID: 9237069
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative determination of bile acid glucuronides in serum by mass fragmentography.
    Takikawa H; Otsuka H; Beppu T; Seyama Y; Yamakawa T
    J Biochem; 1982 Oct; 92(4):985-98. PubMed ID: 7174649
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of bile and bile acids on cultured human fibroblasts.
    Trias X; Strebel HM; Paumgartner G; Wiesmann UN
    Eur J Clin Invest; 1977 Jun; 7(3):189-94. PubMed ID: 19261
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NaCl transport stimulates prostaglandin release in cultured renal epithelial (MDCK) cells.
    Kurtz A; Pfeilschifter J; Brown CD; Bauer C
    Am J Physiol; 1986 May; 250(5 Pt 1):C676-81. PubMed ID: 3458378
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile.
    Cohen DE; Thurston GM; Chamberlin RA; Benedek GB; Carey MC
    Biochemistry; 1998 Oct; 37(42):14798-814. PubMed ID: 9778354
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cholestasis induced by sodium taurolithocholate in isolated hamster liver.
    King JE; Schoenfield LJ
    J Clin Invest; 1971 Nov; 50(11):2305-12. PubMed ID: 5096514
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Promotion of hepatocellular foci in female rats by chenodeoxycholic acid.
    Blair PC; Popp JA; Bryant-Varela BJ; Thompson MB
    Carcinogenesis; 1991 Jan; 12(1):59-63. PubMed ID: 1988183
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative determination of individual non-sulfated bile acids and sulfated lithocholic acid in serum by mass fragmentography.
    Beppu T; Seyama Y; Kasama T; Yamakawa T
    J Biochem; 1981 Jun; 89(6):1963-73. PubMed ID: 7287668
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bile acids in bile during long-term chenodeoxycholic acid treatment.
    Bremmelgaard A; Pedersen L
    Scand J Gastroenterol; 1976; 11(2):161-5. PubMed ID: 1265436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Choleric potencies of some bile acids and their effect on biliary excretion of eosin in the rat.
    Fischer E; Barth A; Klinger W; Gregus Z; Varga F
    Acta Biol Med Ger; 1980; 39(6):711-5. PubMed ID: 6161503
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of hyperosmolality on calcium mobilization in renal inner medulla: relationship to alterations in prostaglandin E synthesis.
    Craven PA; Studer RK; DeRubertis FR
    J Lab Clin Med; 1982 Jun; 99(6):806-15. PubMed ID: 6804583
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bile acids, diarrhea, and antibiotics: data, speculation, and a unifying hypothesis.
    Hofmann AF
    J Infect Dis; 1977 Mar; 135 Suppl():S126-32. PubMed ID: 321706
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Modulation of hypertonicity-induced aquaporin-1 by sodium chloride, urea, betaine, and heat shock in murine renal medullary cells.
    Umenishi F; Yoshihara S; Narikiyo T; Schrier RW
    J Am Soc Nephrol; 2005 Mar; 16(3):600-7. PubMed ID: 15647343
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bile acids increase cellular free calcium in cultured kidney cells (LLC-PK).
    Montrose MH; Lester R; Zimniak P; Anwer MS; Murer H
    Pflugers Arch; 1988 Jul; 412(1-2):164-71. PubMed ID: 3174379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Betaine and inositol reduce MDCK cell glycerophosphocholine by stimulating its degradation.
    Kwon ED; Zablocki K; Peters EM; Jung KY; García-Pérez A; Burg MB
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C200-7. PubMed ID: 8772445
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitotic aneuploidy as a possible mechanism for tumour promoting activity in bile acids.
    Ferguson LR; Parry JM
    Carcinogenesis; 1984 Apr; 5(4):447-51. PubMed ID: 6368034
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Renal medullary osmolytes NaCl and urea differentially modulate human tubular cell cytokine expression and monocyte recruitment.
    Schmitz J; Brauns N; Hüsing AM; Flechsig M; Glomb T; Bräsen JH; Haller H; von Vietinghoff S
    Eur J Immunol; 2022 Aug; 52(8):1258-1272. PubMed ID: 35527392
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ABCC1 is related to the protection of the distal nephron against hyperosmolality and high sodium environment: possible implications for cancer chemotherapy.
    Fonseca LM; Alvarez AB; Rodrigues RC; Santos DH; Lopes AG; Capella MA
    PLoS One; 2013; 8(6):e68049. PubMed ID: 23840808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of bile acids on human airway epithelial cells: implications for aerodigestive diseases.
    Aldhahrani A; Verdon B; Ward C; Pearson J
    ERJ Open Res; 2017 Jan; 3(1):. PubMed ID: 28344983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.