BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 9608054)

  • 1. Signature sequences in diverse proteins provide evidence of a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria.
    Gupta RS; Johari V
    J Mol Evol; 1998 Jun; 46(6):716-20. PubMed ID: 9608054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The sequences of heat shock protein 40 (DnaJ) homologs provide evidence for a close evolutionary relationship between the Deinococcus-thermus group and cyanobacteria.
    Bustard K; Gupta RS
    J Mol Evol; 1997 Aug; 45(2):193-205. PubMed ID: 9236279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes.
    Gupta RS; Bustard K; Falah M; Singh D
    J Bacteriol; 1997 Jan; 179(2):345-57. PubMed ID: 8990285
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the deinococcus-thermus phylum.
    Griffiths E; Gupta RS
    J Bacteriol; 2004 May; 186(10):3097-107. PubMed ID: 15126471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sequence analysis of the L-lactate dehydrogenase-encoding gene of Deinococcus radiodurans, a suitable mesophilic counterpart for Thermus.
    Narumi I; Watanabe H
    Gene; 1996 Jun; 172(1):117-9. PubMed ID: 8654970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signature sequences in diverse proteins provide evidence for the late divergence of the Order Aquificales.
    Griffiths E; Gupta RS
    Int Microbiol; 2004 Mar; 7(1):41-52. PubMed ID: 15179606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phylogeny of proteobacteria: relationships to other eubacterial phyla and eukaryotes.
    Gupta RS
    FEMS Microbiol Rev; 2000 Oct; 24(4):367-402. PubMed ID: 10978543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin and spread of photosynthesis based upon conserved sequence features in key bacteriochlorophyll biosynthesis proteins.
    Gupta RS
    Mol Biol Evol; 2012 Nov; 29(11):3397-412. PubMed ID: 22628531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolutionary relationships among photosynthetic prokaryotes (Heliobacterium chlorum, Chloroflexus aurantiacus, cyanobacteria, Chlorobium tepidum and proteobacteria): implications regarding the origin of photosynthesis.
    Gupta RS; Mukhtar T; Singh B
    Mol Microbiol; 1999 Jun; 32(5):893-906. PubMed ID: 10361294
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of distinctive molecular traits that are characteristic of the phylum "Deinococcus-Thermus" and distinguish its main constituent groups.
    Ho J; Adeolu M; Khadka B; Gupta RS
    Syst Appl Microbiol; 2016 Oct; 39(7):453-463. PubMed ID: 27506333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein signatures (molecular synapomorphies) that are distinctive characteristics of the major cyanobacterial clades.
    Gupta RS
    Int J Syst Evol Microbiol; 2009 Oct; 59(Pt 10):2510-26. PubMed ID: 19622649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of signature proteins that are distinctive of the Deinococcus-Thermus phylum.
    Griffiths E; Gupta RS
    Int Microbiol; 2007 Sep; 10(3):201-8. PubMed ID: 18076002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular signatures in protein sequences that are characteristic of cyanobacteria and plastid homologues.
    Gupta RS; Pereira M; Chandrasekera C; Johari V
    Int J Syst Evol Microbiol; 2003 Nov; 53(Pt 6):1833-42. PubMed ID: 14657112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns of temperature adaptation in proteins from the bacteria Deinococcus radiodurans and Thermus thermophilus.
    McDonald JH
    Mol Biol Evol; 2001 May; 18(5):741-9. PubMed ID: 11319258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA polymerase C of the thermophilic bacterium Thermus aquaticus: classification and phylogenetic analysis of the family C DNA polymerases.
    Huang YP; Ito J
    J Mol Evol; 1999 Jun; 48(6):756-69. PubMed ID: 10229580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning of the HSP70 gene from Halobacterium marismortui: relatedness of archaebacterial HSP70 to its eubacterial homologs and a model for the evolution of the HSP70 gene.
    Gupta RS; Singh B
    J Bacteriol; 1992 Jul; 174(14):4594-605. PubMed ID: 1624448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phylogenetic analysis of mycoplasmas based on Hsp70 sequences: cloning of the dnaK (hsp70) gene region of Mycoplasma capricolum.
    Falah M; Gupta RS
    Int J Syst Bacteriol; 1997 Jan; 47(1):38-45. PubMed ID: 8995799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and sequence determination of the tuf gene coding for the elongation factor Tu of Thermus thermophilus HB8.
    Kushiro M; Shimizu M; Tomita K
    Eur J Biochem; 1987 Dec; 170(1-2):93-8. PubMed ID: 2826164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenomics and molecular signatures for the order Neisseriales: proposal for division of the order Neisseriales into the emended family Neisseriaceae and Chromobacteriaceae fam. nov.
    Adeolu M; Gupta RS
    Antonie Van Leeuwenhoek; 2013 Jul; 104(1):1-24. PubMed ID: 23575986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison.
    Rainey FA; Nobre MF; Schumann P; Stackebrandt E; da Costa MS
    Int J Syst Bacteriol; 1997 Apr; 47(2):510-4. PubMed ID: 9103641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.