These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 9608689)

  • 41. Visualization of latent fingerprint corrosion of brass.
    Bond JW
    J Forensic Sci; 2009 Sep; 54(5):1034-41. PubMed ID: 19627419
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA recovery from unfired and fired cartridge cases: A comparison of swabbing, tape lifting, vacuum filtration, and direct PCR.
    Prasad E; Hitchcock C; Raymond J; Cole A; Barash M; Gunn P; McNevin D; van Oorschot RAH
    Forensic Sci Int; 2020 Dec; 317():110507. PubMed ID: 32977300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of cleaning regimes for the effective removal of fingerprint deposits from brass.
    Paterson E; Bond JW; Hillman AR
    J Forensic Sci; 2010 Jan; 55(1):221-4. PubMed ID: 20002262
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A comparison of fingerprint sweat corrosion of different alloys of brass.
    Sykes S; Bond JW
    J Forensic Sci; 2013 Jan; 58(1):138-41. PubMed ID: 23009034
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fluorescent Cationic Conjugated Polymer-Based Adaptive Developing Strategy for Both Sebaceous and Blood Fingerprints.
    Zhang C; Fan Z; Zhan H; Zhou H; Ma R; Fan LJ
    ACS Appl Mater Interfaces; 2021 Jun; 13(23):27419-27429. PubMed ID: 34080426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Visualization of latent fingermark corrosion of brass, climatic influence in a comparison between the U.K. and Iraq.
    Bond JW; Eliopulos LN; Brady TF
    J Forensic Sci; 2011 Mar; 56(2):506-9. PubMed ID: 21342194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Optimized development of sebaceous fingermarks on nonporous substrates with conformal columnar thin films.
    Muhlberger SA; Pulsifer DP; Lakhtakia A; Martín-Palma RJ; Shaler RC
    J Forensic Sci; 2014 Jan; 59(1):94-102. PubMed ID: 24400828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Latent fingermark development on fired and unfired brass ammunition under controlled and blind conditions.
    Lam R; Hockey D; Williamson J; Hearns NGR
    Forensic Sci Int; 2022 Aug; 337():111369. PubMed ID: 35764001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fingermark detection based on the in situ growth of luminescent nanoparticles--towards a new generation of multimetal deposition.
    Becue A; Scoundrianos A; Champod C; Margot P
    Forensic Sci Int; 2008 Jul; 179(1):39-43. PubMed ID: 18502068
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Understanding the chemistry of the development of latent fingerprints by superglue fuming.
    Wargacki SP; Lewis LA; Dadmun MD
    J Forensic Sci; 2007 Sep; 52(5):1057-62. PubMed ID: 17680999
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microwave selective thermal development of latent fingerprints on porous surfaces: potentialities of the method and preliminary experimental results.
    Rosa R; Veronesi P; Leonelli C
    J Forensic Sci; 2013 Sep; 58(5):1314-1321. PubMed ID: 23865392
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Determining an optimal sequence for chemical development of latent prints on cartridge casings and shotgun shells.
    Edmiston KE; Johnson J
    J Forensic Sci; 2009 Nov; 54(6):1327-31. PubMed ID: 19737340
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of 1,2-indanedione and 5,6-dimethoxy-1,2-indanedione for the detection of latent fingerprints on porous surfaces.
    Roux C; Jones N; Lennard C; Stoilovic M
    J Forensic Sci; 2000 Jul; 45(4):761-9. PubMed ID: 10914568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Development of latent fingerprints on metallic surfaces using electropolymerization processes.
    Bersellini C; Garofano L; Giannetto M; Lusardi F; Mori G
    J Forensic Sci; 2001 Jul; 46(4):871-7. PubMed ID: 11451069
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Preliminary Study on Vacuum Metal Deposition as a Standalone Method for Enhancement of Fingermarks on Ballistic Brass Materials.
    Christofidis G; Morrissey J; Birkett JW
    J Forensic Sci; 2019 Sep; 64(5):1500-1505. PubMed ID: 30908626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A methodology for finger mark research.
    Sears VG; Bleay SM; Bandey HL; Bowman VJ
    Sci Justice; 2012 Sep; 52(3):145-60. PubMed ID: 22841138
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [The use of emission spectrum analysis in the forensic medical expertise of gunshot wounds (experimental research)].
    Makarenko TF; Luzanova IS; Chirkova OG
    Sud Med Ekspert; 1999; 42(2):5-12. PubMed ID: 10224918
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Forensic applications of chemical imaging: latent fingerprint detection using visible absorption and luminescence.
    Exline DL; Wallace C; Roux C; Lennard C; Nelson MP; Treado PJ
    J Forensic Sci; 2003 Sep; 48(5):1047-53. PubMed ID: 14535667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Associating gunpowder and residues from commercial ammunition using compositional analysis.
    MacCrehan WA; Reardon MR; Duewer DL
    J Forensic Sci; 2002 Mar; 47(2):260-6. PubMed ID: 11908593
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vacuum metal deposition: developing latent fingerprints on polyethylene substrates after the deposition of excess gold.
    Jones N; Stoilovic M; Lennard C; Roux C
    Forensic Sci Int; 2001 Nov; 123(1):5-12. PubMed ID: 11731190
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.