These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 96087)

  • 1. Viability and endogenous substrates used during starvation survival of Rhodospirillum rubrum.
    Breznak JA; Potrikus CJ; Pfennig N; Ensign JC
    J Bacteriol; 1978 May; 134(2):381-8. PubMed ID: 96087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of growth rate and starvation on fluorescent in situ hybridization of Rhodopseudomonas palustris.
    Odaa Y; Slagmana S; Meijerb WG; Forneya LJ; Gottschala JC
    FEMS Microbiol Ecol; 2000 Jun; 32(3):205-213. PubMed ID: 10858579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Acid-soluble nucleotides of the phototrophic bacterium Rhodospirillum rubrum during growth in light and in darkness].
    Shadi A; Mansurova SE; Cherniad'ev II; Kulaev IS
    Mikrobiologiia; 1975; 44(2):206-9. PubMed ID: 818480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of cytochrome b+50 in membranes of Rhodospirillum rubrum isolated from aerobically and phototrophically grown cells.
    Niederman RA; Hunter CN; Mallon DE; Jones OT
    Biochem J; 1980 Feb; 186(2):453-9. PubMed ID: 6769433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutants of Rhodospirrillum rubrum obtained after long-term anaerobic, dark growth.
    Uffen RL; Sybesma C; Wolfe RS
    J Bacteriol; 1971 Dec; 108(3):1348-56. PubMed ID: 5003179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Regulation as a Consequence of Anaerobic 5-Methylthioadenosine Recycling in Rhodospirillum rubrum.
    North JA; Sriram J; Chourey K; Ecker CD; Sharma R; Wildenthal JA; Hettich RL; Tabita FR
    mBio; 2016 Jul; 7(4):. PubMed ID: 27406564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions.
    Voelskow H; Schön G
    Arch Microbiol; 1978 Nov; 119(2):129-33. PubMed ID: 103509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Dark metabolism of acetate in Rhodospirillum rubrum cells, grown under photoheterotropic conditions].
    Berg IA; Krasil'nikova EN; Ivanovskiĭ RN
    Mikrobiologiia; 2000; 69(1):13-8. PubMed ID: 10808482
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fine structure of Rhodospirillum rubrum.
    COHEN-BAZIRE G; KUNISAWA R
    J Cell Biol; 1963 Feb; 16(2):401-19. PubMed ID: 14022119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane differentiation in phototrophically growing Rhodospirillum rubrum during transition from low to high light intensity.
    Irschik H; Oelze J
    Biochim Biophys Acta; 1973 Nov; 330(1):80-9. PubMed ID: 4148662
    [No Abstract]   [Full Text] [Related]  

  • 11. Pyruvate-dependent diauxic growth of Rhodospirillum rubrum in light.
    Solaiman D; Uffen RL
    J Bacteriol; 1982 Dec; 152(3):1175-87. PubMed ID: 6815163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term nutrient starvation of continuously cultured (glucose-limited) Selenomonas ruminantium.
    Mink RW; Hespell RB
    J Bacteriol; 1981 Nov; 148(2):541-50. PubMed ID: 6170629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of soluble and membrane-bound inorganic pyrophosphatases in the photosynthetic bacterium Rhodospirillum rubrum provides insights into pyrophosphate-based stress bioenergetics.
    López-Marqués RL; Pérez-Castiñeira JR; Losada M; Serrano A
    J Bacteriol; 2004 Aug; 186(16):5418-26. PubMed ID: 15292143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation and lethal effect of tritium (tritiated water) in Rhodopseudomonas spheroides. Under light-anaerobic and dark-aerobic conditions.
    Inomata T
    Radiat Environ Biophys; 1983; 21(4):281-94. PubMed ID: 6602996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes.
    Boylen CW; Ensign JC
    J Bacteriol; 1970 Sep; 103(3):578-87. PubMed ID: 5474876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototactic response of aerobically cultivated Rhodospirillum rubrum.
    Harayama S; Iino T
    J Gen Microbiol; 1976 May; 94(1):173-9. PubMed ID: 819621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electron transport system of the halophilic purple nonsulfur bacterium Rhodospirillum salinarum. 1. A functional and thermodynamic analysis of the respiratory chain in aerobically and photosynthetically grown cells.
    Moschettini G; Hochkoeppler A; Monti B; Benelli B; Zannoni D
    Arch Microbiol; 1997 Oct; 168(4):302-9. PubMed ID: 9297468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the architecture of cytoplasmic and intracytoplasmic membranes of three chemotrophically and phototrophically grown species of the Rhodospirillaceae.
    Golecki JR; Oelze J
    J Bacteriol; 1980 Nov; 144(2):781-8. PubMed ID: 6776096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pH, O2, and temperature on the absorption properties of the secondary light-harvesting antenna in members of the family Rhodospirillaceae.
    Uffen RL
    J Bacteriol; 1985 Sep; 163(3):943-50. PubMed ID: 3928601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness.
    Gorrell TE; Uffen RL
    J Bacteriol; 1977 Aug; 131(2):533-43. PubMed ID: 18439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.