These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9608749)

  • 41. Exploring the diversity of bacteriophage specific to Oenococcus oeni and Lactobacillus spp and their role in wine production.
    Xu Z; Walker ME; Zhang J; Gardner JM; Sumby KM; Jiranek V
    Appl Microbiol Biotechnol; 2021 Dec; 105(23):8575-8592. PubMed ID: 34694447
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Isolation and characterization of "Listeria monocytogenes" bacteriophages (author's transl)].
    Audurier A; Rocourt J; Courtieu AL
    Ann Microbiol (Paris); 1977; 128(2):185-98. PubMed ID: 409323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bacteriophages of leuconostoc, oenococcus, and weissella.
    Kot W; Neve H; Heller KJ; Vogensen FK
    Front Microbiol; 2014; 5():186. PubMed ID: 24817864
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Intraspecific genetic diversity of Oenococcus oeni as derived from DNA fingerprinting and sequence analyses.
    Zavaleta AI; Martínez-Murcia AJ; Rodríguez-Valera F
    Appl Environ Microbiol; 1997 Apr; 63(4):1261-7. PubMed ID: 9097422
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phylogenomic Analysis of Oenococcus oeni Reveals Specific Domestication of Strains to Cider and Wines.
    Campbell-Sills H; El Khoury M; Favier M; Romano A; Biasioli F; Spano G; Sherman DJ; Bouchez O; Coton E; Coton M; Okada S; Tanaka N; Dols-Lafargue M; Lucas PM
    Genome Biol Evol; 2015 May; 7(6):1506-18. PubMed ID: 25977455
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
    Salema M; Capucho I; Poolman B; San Romão MV; Dias MC
    J Bacteriol; 1996 Sep; 178(18):5537-9. PubMed ID: 8808948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.
    Jiang J; Sumby KM; Sundstrom JF; Grbin PR; Jiranek V
    Food Microbiol; 2018 Aug; 73():150-159. PubMed ID: 29526200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A new approach for selection of Oenococcus oeni strains in order to produce malolactic starters.
    Coucheney F; Desroche N; Bou M; Tourdot-Maréchal R; Dulau L; Guzzo J
    Int J Food Microbiol; 2005 Dec; 105(3):463-70. PubMed ID: 16081179
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electron microscopic investigation of lysogeny of Clostridium difficile strains isolated from antibiotic-associated diarrhea cases and from healthy carriers.
    Nagy E; Földes J
    APMIS; 1991 Apr; 99(4):321-6. PubMed ID: 2036214
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bacteriophages induced from lysogenic root canal isolates of Enterococcus faecalis.
    Stevens RH; Porras OD; Delisle AL
    Oral Microbiol Immunol; 2009 Aug; 24(4):278-84. PubMed ID: 19572888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation and partial characterization of normal and defective bacteriophages of gram-negative hydrogen bacteria.
    Auling G; Mayer F; Schlegel HG
    Arch Microbiol; 1977 Dec; 115(3):237-47. PubMed ID: 603337
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Novel Bacteriophages in Enterococcus spp.
    Mazaheri Nezhad Fard R; Barton MD; Heuzenroeder MW
    Curr Microbiol; 2010 Jun; 60(6):400-6. PubMed ID: 19967374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A study into the role of L-aspartic acid on the metabolism of L-malic acid and D-glucose by Oenococcus oeni.
    Vasserot Y; Dion C; Bonnet E; Maujean A; Jeandet P
    J Appl Microbiol; 2001 Mar; 90(3):380-7. PubMed ID: 11298233
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for frequent lysogeny in lactobacilli: temperate bacteriophages within the subgenus Streptobacterium.
    Stetter KO
    J Virol; 1977 Nov; 24(2):685-9. PubMed ID: 916033
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Temperate bacteriophages and lysogeny in lactic acid bacteria.
    Davidson BE; Powell IB; Hillier AJ
    FEMS Microbiol Rev; 1990 Sep; 7(1-2):79-90. PubMed ID: 2271226
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of malolactic bacteria isolated from Aosta Valley wines and evidence of psychrotrophy in some strains.
    Vigentini I; Praz A; Domeneghetti D; Zenato S; Picozzi C; Barmaz A; Foschino R
    J Appl Microbiol; 2016 Apr; 120(4):934-45. PubMed ID: 26820246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biological characterization of induced phages from Saccharopolyspora hirsuta 367 and comparison with phage JHJ-1.
    Gaudreau LR; Lavoie JM; Déry CV
    J Gen Microbiol; 1991 Oct; 137(10):2347-52. PubMed ID: 1770351
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Temperate phage-antibiotic synergy across antibiotic classes reveals new mechanism for preventing lysogeny.
    Al-Anany AM; Fatima R; Nair G; Mayol JT; Hynes AP
    mBio; 2024 Jun; 15(6):e0050424. PubMed ID: 38757974
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Growth and metabolism of Oenococcus oeni for malolactic fermentation under pressure.
    Neto R; Mota MJ; Lopes RP; Delgadillo I; Saraiva JA
    Lett Appl Microbiol; 2016 Dec; 63(6):426-433. PubMed ID: 27581841
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Biology of two lysogenic phages from Bacillus thuringiensis MZ1].
    Liao W; Sun F; Song SY; Shi W; Pang Y
    Wei Sheng Wu Xue Bao; 2007 Feb; 47(1):92-7. PubMed ID: 17436632
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.