BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 9609664)

  • 1. Molecular cytogenetic analysis of heterochromatin in the chromosomes of tilapia, Oreochromis niloticus (Teleostei: Cichlidae).
    Oliveira C; Wright JM
    Chromosome Res; 1998 Apr; 6(3):205-11. PubMed ID: 9609664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and cytogenetic analysis of the telomeric (TTAGGG)n repetitive sequences in the Nile tilapia, Oreochromis niloticus (Teleostei: Cichlidae).
    Chew JS; Oliveira C; Wright JM; Dobson MJ
    Chromosoma; 2002 Mar; 111(1):45-52. PubMed ID: 12068922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterisation of the chromosome fusions in Oreochromis karongae.
    Mota-Velasco JC; Ferreira IA; Cioffi MB; Ocalewicz K; Campos-Ramos R; Shirak A; Lee BY; Martins C; Penman DJ
    Chromosome Res; 2010 Jul; 18(5):575-86. PubMed ID: 20574823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic variability in a family of satellite DNAs from tilapia (Pisces: Cichlidae).
    Franck JP; Wright JM; McAndrew BJ
    Genome; 1992 Oct; 35(5):719-25. PubMed ID: 1358754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A heterochromatic satellite DNA is highly amplified in a single chromosome of Muscari (Hyacinthaceae).
    de la Herrán R; Robles F; Cuñado N; Santos JL; Ruiz Rejón M; Garrido-Ramos MA; Ruiz Rejón C
    Chromosoma; 2001 Jul; 110(3):197-202. PubMed ID: 11513294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A GC-rich satellite DNA and karyology of the bivalve mollusk Donax trunculus: a dominance of GC-rich heterochromatin.
    Petrović V; Pérez-García C; Pasantes JJ; Satović E; Prats E; Plohl M
    Cytogenet Genome Res; 2009; 124(1):63-71. PubMed ID: 19372670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Centromeric heterochromatin in the cattle rob(1;29) translocation: alpha-satellite I sequences, in-situ MspI digestion patterns, chromomycin staining and C-bands.
    Chaves R; Heslop-Harrsion JS; Guedes-Pinto H
    Chromosome Res; 2000; 8(7):621-6. PubMed ID: 11117358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early origins of the X and Y chromosomes: lessons from tilapia.
    Griffin DK; Harvey SC; Campos-Ramos R; Ayling LJ; Bromage NR; Masabanda JS; Penman DJ
    Cytogenet Genome Res; 2002; 99(1-4):157-63. PubMed ID: 12900559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular cytogenetic study of heterochromatin in Hisonotus leucofrenatus (Teleostei, Loricariidae, Hypoptopomatinae).
    Andreata AA; Ferreira DC; Foresti F; Oliveira C
    Hereditas; 2010 Feb; 147(1):10-7. PubMed ID: 20416012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human (Homo sapiens) and chimpanzee (Pan troglodytes) share similar ancestral centromeric alpha satellite DNA sequences but other fractions of heterochromatin differ considerably.
    Luke S; Verma RS
    Am J Phys Anthropol; 1995 Jan; 96(1):63-71. PubMed ID: 7726296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromosome evolution in African cichlid fish: contributions from the physical mapping of repeated DNAs.
    Ferreira IA; Poletto AB; Kocher TD; Mota-Velasco JC; Penman DJ; Martins C
    Cytogenet Genome Res; 2010; 129(4):314-22. PubMed ID: 20606399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analyses of heterochromatin in Microtus: sequence heterogeneity and localized expansion and contraction of satellite DNA arrays.
    Modi WS
    Cytogenet Cell Genet; 1993; 62(2-3):142-8. PubMed ID: 8428514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the heterochromatin of the darkling beetle Misolampus goudoti: cloning of two satellite DNA families and digestion of chromosomes with restriction enzymes.
    Pons J; Petitpierre E; Juan C
    Hereditas; 1993; 119(2):179-85. PubMed ID: 8106263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Study of alpha-satellite DNA in cosmid libraries, specific for chromosomes 13, 21, and 22, using fluorescence in situ hybridization].
    Solov'ev IV; Iurov IuB; Vorsanova SG; Marcais B; Rogaev EI; Kapanadze BI; Brodianskiĭ VM; Iankovskiĭ NK; Roizes G
    Genetika; 1998 Nov; 34(11):1470-9. PubMed ID: 10096024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Restriction endonuclease digestion patterns of harvest mice (Reithrodontomys) chromosomes: a comparison to G-bands, C-bands, and in situ hybridization.
    Van Den Bussche RA; Honeycutt RL; Baker RJ
    Genetica; 1992; 87(3):141-9. PubMed ID: 1363938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical mapping of the brain and ovarian aromatase genes in the Nile Tilapia, Oreochromis niloticus, by fluorescence in situ hybridization.
    Harvey SC; Kwon JY; Penman DJ
    Anim Genet; 2003 Feb; 34(1):62-4. PubMed ID: 12580790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uniform distribution of satellite DNA variants on the chromosomes of tenebrionid species Alphitobius diaperinus and Tenebrio molitor.
    Bruvo B; Plohl M; Ugarković D
    Hereditas; 1995; 123(1):69-75. PubMed ID: 8598348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosome polymorphism in Astyanax fasciatus (Teleostei, Characidae). 2--Chromosomal location of a satellite DNA.
    Pazza R; Frehner Kavalco K; Bertollo LA
    Cytogenet Genome Res; 2008; 122(1):61-6. PubMed ID: 18931487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of satellite DNA fractions within major heterochromatic regions of human chromosomes as revealed by PleI and TfiI digestion.
    Tagarro I; Fernández-Peralta AM; González-Aguilera JJ
    Cytogenet Cell Genet; 1992; 60(2):102-6. PubMed ID: 1611906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.