BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 9609712)

  • 41. Possible evolution of factors involved in protein biosynthesis.
    Nyborg J
    Acta Biochim Pol; 1998; 45(4):883-94. PubMed ID: 10397336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of Arg288 of Escherichia coli elongation factor Tu to translational functionality.
    Rattenborg T; Nautrup Pedersen G; Clark BF; Knudsen CR
    Eur J Biochem; 1997 Oct; 249(2):408-14. PubMed ID: 9370347
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enacyloxin IIa pinpoints a binding pocket of elongation factor Tu for development of novel antibiotics.
    Parmeggiani A; Krab IM; Watanabe T; Nielsen RC; Dahlberg C; Nyborg J; Nissen P
    J Biol Chem; 2006 Feb; 281(5):2893-900. PubMed ID: 16257965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ribosome interactions of aminoacyl-tRNA and elongation factor Tu in the codon-recognition complex.
    Stark H; Rodnina MV; Wieden HJ; Zemlin F; Wintermeyer W; van Heel M
    Nat Struct Biol; 2002 Nov; 9(11):849-54. PubMed ID: 12379845
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solving the structure of Escherichia coli elongation factor Tu using a twinned data set.
    Heffron SE; Moeller R; Jurnak F
    Acta Crystallogr D Biol Crystallogr; 2006 Apr; 62(Pt 4):433-8. PubMed ID: 16552145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Crystal structure of active elongation factor Tu reveals major domain rearrangements.
    Berchtold H; Reshetnikova L; Reiser CO; Schirmer NK; Sprinzl M; Hilgenfeld R
    Nature; 1993 Sep; 365(6442):126-32. PubMed ID: 8371755
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Delayed release of inorganic phosphate from elongation factor Tu following GTP hydrolysis on the ribosome.
    Kothe U; Rodnina MV
    Biochemistry; 2006 Oct; 45(42):12767-74. PubMed ID: 17042495
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Predicting the binding affinities of misacylated tRNAs for Thermus thermophilus EF-Tu.GTP.
    Asahara H; Uhlenbeck OC
    Biochemistry; 2005 Aug; 44(33):11254-61. PubMed ID: 16101309
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation, crystallization and X-ray analysis of the quaternary complex of Phe-tRNA(Phe), EF-Tu, a GTP analog and kirromycin.
    Kristensen O; Reshetnikova L; Nissen P; Siboska G; Thirup S; Nyborg J
    FEBS Lett; 1996 Dec; 399(1-2):59-62. PubMed ID: 8980119
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hydrodynamic study with quasielastic light scattering and sedimentation of bacterial elongation factor EF-Tu.guanosine-5'-diphosphate complex under nonassociating conditions.
    Sam T; Pley C; Mandel M
    Biopolymers; 1990; 30(3-4):299-308. PubMed ID: 2177662
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Single-molecule structural dynamics of EF-G--ribosome interaction during translocation.
    Wang Y; Qin H; Kudaravalli RD; Kirillov SV; Dempsey GT; Pan D; Cooperman BS; Goldman YE
    Biochemistry; 2007 Sep; 46(38):10767-75. PubMed ID: 17727272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient separation of Thermus aquaticus EF-Tu functional complexes.
    Stepanov VG; Nyborg J
    Biochem Biophys Res Commun; 2001 Mar; 282(1):108-15. PubMed ID: 11263979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. tRNA fluorescent labeling at 3' end inducing an aminoacyl-tRNA-like behavior.
    Servillo L; Balestrieri C; Quagliuolo L; Iorio EL; Giovane A
    Eur J Biochem; 1993 Apr; 213(1):583-9. PubMed ID: 7682946
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular complementarity between tetracycline and the GTPase active site of elongation factor Tu.
    Heffron SE; Mui S; Aorora A; Abel K; Bergmann E; Jurnak F
    Acta Crystallogr D Biol Crystallogr; 2006 Nov; 62(Pt 11):1392-400. PubMed ID: 17057344
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystal structure of the archaeal translation initiation factor 2 in complex with a GTP analogue and Met-tRNAf(Met.).
    Stolboushkina E; Nikonov S; Zelinskaya N; Arkhipova V; Nikulin A; Garber M; Nikonov O
    J Mol Biol; 2013 Mar; 425(6):989-98. PubMed ID: 23291527
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deacylated tRNA is released from the E site upon A site occupation but before GTP is hydrolyzed by EF-Tu.
    Dinos G; Kalpaxis DL; Wilson DN; Nierhaus KH
    Nucleic Acids Res; 2005; 33(16):5291-6. PubMed ID: 16166657
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Binding of tetracyclines to elongation factor Tu, the Tet repressor, and the ribosome: a molecular dynamics simulation study.
    Aleksandrov A; Simonson T
    Biochemistry; 2008 Dec; 47(51):13594-603. PubMed ID: 19032078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Defining a smaller RNA substrate for elongation factor Tu.
    Nazarenko IA; Uhlenbeck OC
    Biochemistry; 1995 Feb; 34(8):2545-52. PubMed ID: 7532998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Induced fit in initial selection and proofreading of aminoacyl-tRNA on the ribosome.
    Pape T; Wintermeyer W; Rodnina M
    EMBO J; 1999 Jul; 18(13):3800-7. PubMed ID: 10393195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors.
    Gao H; Zhou Z; Rawat U; Huang C; Bouakaz L; Wang C; Cheng Z; Liu Y; Zavialov A; Gursky R; Sanyal S; Ehrenberg M; Frank J; Song H
    Cell; 2007 Jun; 129(5):929-41. PubMed ID: 17540173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.