BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 9609790)

  • 21. Reactive oxygen species mediated diaphragm fatigue in a rat model of chronic intermittent hypoxia.
    Shortt CM; Fredsted A; Chow HB; Williams R; Skelly JR; Edge D; Bradford A; O'Halloran KD
    Exp Physiol; 2014 Apr; 99(4):688-700. PubMed ID: 24443349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protection against SR 4233 (Tirapazamine) aerobic cytotoxicity by the metal chelators desferrioxamine and tiron.
    Herscher LL; Krishna MC; Cook JA; Coleman CN; Biaglow JE; Tuttle SW; Gonzalez FJ; Mitchell JB
    Int J Radiat Oncol Biol Phys; 1994 Nov; 30(4):879-85. PubMed ID: 7960991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rabbit versus rat urinary bladder: effects of in vitro hypoxia.
    Whitbeck C; Barreto M; Horan P; Levin SS; Levin RM
    Pharmacology; 1999 Sep; 59(3):156-64. PubMed ID: 10450071
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protective effect of atrial natriuretic peptide on electrical-field-stimulated rat ventricular strips during hypoxia.
    Ljusegren ME; Andersson RG
    Pharmacol Toxicol; 1994 Dec; 75(6):337-42. PubMed ID: 7899254
    [TBL] [Abstract][Full Text] [Related]  

  • 25. N-acetylcysteine depresses contractile function and inhibits fatigue of diaphragm in vitro.
    Khawli FA; Reid MB
    J Appl Physiol (1985); 1994 Jul; 77(1):317-24. PubMed ID: 7961253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cyclosporin A disrupts bradykinin signaling through superoxide.
    Vetter M; Chen ZJ; Chang GD; Che D; Liu S; Chang CH
    Hypertension; 2003 May; 41(5):1136-42. PubMed ID: 12695417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prostanoid production in rabbit corpus cavernosum. II. Inhibition by oxidative stress.
    Daley JT; Watkins MT; Brown ML; Martinez V; Cuevas P; Saenz de Tejada I
    J Urol; 1996 Sep; 156(3):1169-73. PubMed ID: 8709340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced purinergic contractile responses and P2X1 receptor expression in detrusor muscle during cycles of hypoxia-glucopenia and reoxygenation.
    Elliott RA; Tonnu A; Ghaffar N; Taylor AH; Tincello DG; Norman RI
    Exp Physiol; 2013 Dec; 98(12):1683-95. PubMed ID: 23975903
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Upper airway dilator muscle weakness following intermittent and sustained hypoxia in the rat: effects of a superoxide scavenger.
    Skelly JR; Rowan SC; Jones JF; O'Halloran KD
    Physiol Res; 2013; 62(2):187-96. PubMed ID: 23234416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selected Contribution: Improved anoxic tolerance in rat diaphragm following intermittent hypoxia.
    Clanton TL; Wright VP; Reiser PJ; Klawitter PF; Prabhakar NR
    J Appl Physiol (1985); 2001 Jun; 90(6):2508-13. PubMed ID: 11356820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of pH and hypoxia on function and intracellular pH of the rat diaphragm.
    Shee CD; Cameron IR
    Respir Physiol; 1990 Jan; 79(1):57-68. PubMed ID: 2106718
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactive oxygen in skeletal muscle. II. Extracellular release of free radicals.
    Reid MB; Shoji T; Moody MR; Entman ML
    J Appl Physiol (1985); 1992 Nov; 73(5):1805-9. PubMed ID: 1335453
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tumor necrosis factor and endotoxin do not directly affect in vitro diaphragm function.
    Diaz PT; Julian MW; Wewers MD; Clanton TL
    Am Rev Respir Dis; 1993 Aug; 148(2):281-7. PubMed ID: 8342889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vitamin E prevents apoptosis in cortical neurons during hypoxia and oxygen reperfusion.
    Tagami M; Yamagata K; Ikeda K; Nara Y; Fujino H; Kubota A; Numano F; Yamori Y
    Lab Invest; 1998 Nov; 78(11):1415-29. PubMed ID: 9840616
    [TBL] [Abstract][Full Text] [Related]  

  • 35. O2 occlusion and cyanide induced immediate relaxation and contraction of murine skeletal muscle.
    Hong SJ; Chang CC
    Neurosci Lett; 1993 Aug; 158(1):25-8. PubMed ID: 8233069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxygen radical generation and enzymatic properties of mitochondria in hypoxia/reoxygenation.
    Zwicker K; Dikalov S; Matuschka S; Mainka L; Hofmann M; Khramtsov V; Zimmer G
    Arzneimittelforschung; 1998 Jun; 48(6):629-36. PubMed ID: 9689418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic hypoxia modulates diaphragm function in the developing rat.
    Kass LJ; Bazzy AR
    J Appl Physiol (1985); 2001 Jun; 90(6):2325-9. PubMed ID: 11356799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contractile and metabolic function following an ischemia-reperfusion injury in skeletal muscle: influence of oxygen free radical scavengers.
    Long JW; Laster JL; Stevens RP; Silver WP; Silver D
    Microcirc Endothelium Lymphatics; 1989; 5(3-5):351-63. PubMed ID: 2637948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle.
    O'Leary MF; Hood DA
    J Appl Physiol (1985); 2008 Jul; 105(1):114-20. PubMed ID: 18450984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pentoxifylline improves reoxygenation-induced contractile recovery through a nitric oxide-dependent mechanism in rat papillary muscles.
    Ebrahimi F; Hajrasouliha AR; Tavakoli S; Sadeghipour H; Ghasemi M; Rofoui BR; Ahmadi SH; Dehpour AR
    J Cardiovasc Pharmacol; 2006 Apr; 47(4):571-7. PubMed ID: 16680071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.