These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 9609814)

  • 1. A stimulating nerve cuff for chronic in vivo measurements of torque produced about the ankle in the mouse.
    Warren GL; Ingalls CP; Armstrong RB
    J Appl Physiol (1985); 1998 Jun; 84(6):2171-6. PubMed ID: 9609814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive isometric force measurement of plantar flexors in rats.
    Chawla A; Spinner RJ; Torres Lizardi M; Yaszemski MJ; Windebank AJ; Wang H
    Muscle Nerve; 2014 Nov; 50(5):812-21. PubMed ID: 24639363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiovascular responses during stimulation of hindlimb skeletal muscle nerves in anaesthetized rats.
    Ishide T; Pearce WJ; Ally A
    Clin Exp Pharmacol Physiol; 2002 Aug; 29(8):689-95. PubMed ID: 12100001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-invasive measurement of the input-output properties of peripheral nerve stimulating electrodes.
    Grill WM; Mortimer JT
    J Neurosci Methods; 1996 Mar; 65(1):43-50. PubMed ID: 8815307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective fascicular stimulation of the rat sciatic nerve with multipolar polyimide cuff electrodes.
    Navarro X; Valderrama E; Stieglitz T; Schüttler M
    Restor Neurol Neurosci; 2001; 18(1):9-21. PubMed ID: 11673666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncoupling of in vivo torque production from EMG in mouse muscles injured by eccentric contractions.
    Warren GL; Ingalls CP; Shah SJ; Armstrong RB
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):609-19. PubMed ID: 10050026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adjacent regenerative peripheral nerve interfaces produce phase-antagonist signals during voluntary walking in rats.
    Ursu D; Nedic A; Urbanchek M; Cederna P; Gillespie RB
    J Neuroeng Rehabil; 2017 Apr; 14(1):33. PubMed ID: 28438166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat.
    Leahy JC; Durkovic RG
    J Neurophysiol; 1991 Aug; 66(2):460-72. PubMed ID: 1774582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The force-velocity relationship of the human soleus muscle during submaximal voluntary lengthening actions.
    Pinniger GJ; Steele JR; Cresswell AG
    Eur J Appl Physiol; 2003 Sep; 90(1-2):191-8. PubMed ID: 14504953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of force loss in diabetic mouse skeletal muscle.
    Lesniewski LA; Miller TA; Armstrong RB
    Muscle Nerve; 2003 Oct; 28(4):493-500. PubMed ID: 14506722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of joint torque evoked with monopolar and tripolar-cuff electrodes.
    Tarler MD; Mortimer JT
    IEEE Trans Neural Syst Rehabil Eng; 2003 Sep; 11(3):227-35. PubMed ID: 14518785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microcontroller system for investigating the catch effect: functional electrical stimulation of the common peroneal nerve.
    Hart DJ; Taylor PN; Chappell PH; Wood DE
    Med Eng Phys; 2006 Jun; 28(5):438-48. PubMed ID: 16140559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eccentric training does not increase sarcomere number in rabbit dorsiflexor muscles.
    Koh TJ; Herzog W
    J Biomech; 1998 May; 31(5):499-501. PubMed ID: 9727349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of a peripheral nerve block on torque produced by repetitive electrical stimulation.
    Lagerquist O; Walsh LD; Blouin JS; Collins DF; Gandevia SC
    J Appl Physiol (1985); 2009 Jul; 107(1):161-7. PubMed ID: 19390001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Open-Source 3D-Printed Hindlimb Stabilization Apparatus for Reliable Measurement of Stimulation-Evoked Ankle Flexion in Rat.
    Lam DV; Lindemann M; Yang K; Liu DX; Ludwig KA; Shoffstall AJ
    eNeuro; 2024 Mar; 11(3):. PubMed ID: 38164555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-latency crossed inhibitory responses in extensor muscles during locomotion in the cat.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Feb; 99(2):989-98. PubMed ID: 18094100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of satellite cells in the strength recovery after eccentric contraction-induced muscle injury.
    Rathbone CR; Wenke JC; Warren GL; Armstrong RB
    Am J Physiol Regul Integr Comp Physiol; 2003 Dec; 285(6):R1490-5. PubMed ID: 12920057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A surgical technique for individual control of the muscles of the rabbit lower hindlimb.
    Baggaley M; Sawatsky A; Ross SA; Herzog W
    J Exp Biol; 2024 May; 227(10):. PubMed ID: 38699818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extra forces evoked during electrical stimulation of the muscle or its nerve are generated and modulated by a length-dependent intrinsic property of muscle in humans and cats.
    Frigon A; Thompson CK; Johnson MD; Manuel M; Hornby TG; Heckman CJ
    J Neurosci; 2011 Apr; 31(15):5579-88. PubMed ID: 21490198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The optimal stimulation pattern for skeletal muscle is dependent on muscle length.
    Mela P; Veltink PH; Huijing PA; Salmons S; Jarvis JC
    IEEE Trans Neural Syst Rehabil Eng; 2002 Jun; 10(2):85-93. PubMed ID: 12236451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.