These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 9610104)

  • 1. Model of plasmid-bearing, plasmid-free competition in the chemostat with nutrient recycling and an inhibitor.
    Lu Z; Hadeler KP
    Math Biosci; 1998 Mar; 148(2):147-59. PubMed ID: 9610104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competition between plasmid-bearing and plasmid-free organisms in a chemostat with nutrient recycling and an inhibitor.
    Yuan S; Xiao D; Han M
    Math Biosci; 2006 Jul; 202(1):1-28. PubMed ID: 16797043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmid-bearing, plasmid-free organisms competing for two complementary nutrients in a chemostat.
    Hsu SB; Tzeng YH
    Math Biosci; 2002; 179(2):183-206. PubMed ID: 12208615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Periodic solutions in a model of competition between plasmid-bearing and plasmid-free organisms in a chemostat with an inhibitor.
    Ai S
    J Math Biol; 2001 Jan; 42(1):71-94. PubMed ID: 11271509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition in chemostat-type equations with two habitats.
    Nakaoka S; Takeuchi Y
    Math Biosci; 2006 May; 201(1-2):157-71. PubMed ID: 16448673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Allelopathy of plasmid-bearing and plasmid-free organisms competing for two complementary resources in a chemostat.
    Bhattacharyya J; Smith HL; Pal S
    J Biol Dyn; 2012; 6():628-44. PubMed ID: 22873609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stability in chemostat equations with delayed nutrient recycling.
    Beretta E; Bischi GI; Solimano F
    J Math Biol; 1990; 28(1):99-111. PubMed ID: 2307915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition in the presence of a lethal external inhibitor.
    Hsu SB; Li YS; Waltman P
    Math Biosci; 2000 Oct; 167(2):177-99. PubMed ID: 10998488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of mathematical models of competition with an inhibitor.
    Hsu SB; Waltman P
    Math Biosci; 2004 Jan; 187(1):53-91. PubMed ID: 14609636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of time lags on transient characteristics of a nutrient cycling model.
    Bischi GI
    Math Biosci; 1992 May; 109(2):151-75. PubMed ID: 1600284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates.
    Castella F; Madec S
    J Math Biol; 2014 Jan; 68(1-2):377-415. PubMed ID: 23263380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative chemostat: A modelling framework linking biosynthesis to nutrient cycling on ecological and evolutionary time scales.
    Loladze I
    Math Biosci Eng; 2019 Jan; 16(2):990-1004. PubMed ID: 30861675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mathematical method for analysing plasmid stability in micro-organisms.
    Cooper NS; Brown ME; Caulcott CA
    J Gen Microbiol; 1987 Jul; 133(7):1871-80. PubMed ID: 3312484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacteria and lytic phage coexistence in a chemostat with periodic nutrient supply.
    Aviram I; Rabinovitch A
    Bull Math Biol; 2014 Jan; 76(1):225-44. PubMed ID: 24222038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coexistence in the chemostat as a result of metabolic by-products.
    Hesseler J; Schmidt JK; Reichl U; Flockerzi D
    J Math Biol; 2006 Oct; 53(4):556-84. PubMed ID: 16819650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture.
    Ganusov VV; Brilkov AV
    J Theor Biol; 2002 Nov; 219(2):193-205. PubMed ID: 12413875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competition in the chemostat with an undesirable lethal competitor.
    Braselton JP; Abell ML
    Math Biosci; 2019 Apr; 310():136-147. PubMed ID: 30826313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extinction and uniform persistence in a microbial food web with mycoloop: limiting behavior of a population model with parasitic fungi.
    Almocera AES; Hsu SB; Sy PW
    Math Biosci Eng; 2018 Dec; 16(1):516-537. PubMed ID: 30674130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biofilms and the plasmid maintenance question.
    Imran M; Jones D; Smith H
    Math Biosci; 2005 Feb; 193(2):183-204. PubMed ID: 15748729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-periodicity in chemostat equations: a multi-dimensional negative Bendixson-Dulac criterion.
    Fiedler B; Hsu SB
    J Math Biol; 2009 Aug; 59(2):233-53. PubMed ID: 18956192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.