BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 9610360)

  • 1. Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site.
    Groche D; Becker A; Schlichting I; Kabsch W; Schultz S; Wagner AF
    Biochem Biophys Res Commun; 1998 May; 246(2):342-6. PubMed ID: 9610360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron center, substrate recognition and mechanism of peptide deformylase.
    Becker A; Schlichting I; Kabsch W; Groche D; Schultz S; Wagner AF
    Nat Struct Biol; 1998 Dec; 5(12):1053-8. PubMed ID: 9846875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of peptide deformylase activity by metal cations.
    Ragusa S; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):515-23. PubMed ID: 9665853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the Escherichia coli peptide deformylase.
    Chan MK; Gong W; Rajagopalan PT; Hao B; Tsai CM; Pei D
    Biochemistry; 1997 Nov; 36(45):13904-9. PubMed ID: 9374869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism and metal specificity of bacterial peptide deformylase: a density functional theory QM/MM study.
    Xiao C; Zhang Y
    J Phys Chem B; 2007 Jun; 111(22):6229-35. PubMed ID: 17503802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the Ni(II) complex of Escherichia coli peptide deformylase and suggestions on deformylase activities depending on different metal(II) centres.
    Yen NT; Bogdanović X; Palm GJ; Kühl O; Hinrichs W
    J Biol Inorg Chem; 2010 Feb; 15(2):195-201. PubMed ID: 20112455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical study of the catalytic mechanism and metal-ion dependence of peptide deformylase.
    Wu XH; Quan JM; Wu YD
    J Phys Chem B; 2007 Jun; 111(22):6236-44. PubMed ID: 17497768
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli.
    Ferreira FM; Mendoza-Hernandez G; Castañeda-Bueno M; Aparicio R; Fischer H; Calcagno ML; Oliva G
    J Mol Biol; 2006 Jun; 359(2):308-21. PubMed ID: 16630633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide deformylase-ribosome complex reveals mechanism of nascent chain processing.
    Bingel-Erlenmeyer R; Kohler R; Kramer G; Sandikci A; Antolić S; Maier T; Schaffitzel C; Wiedmann B; Bukau B; Ban N
    Nature; 2008 Mar; 452(7183):108-11. PubMed ID: 18288106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of nickel-peptide deformylase.
    Dardel F; Ragusa S; Lazennec C; Blanquet S; Meinnel T
    J Mol Biol; 1998 Jul; 280(3):501-13. PubMed ID: 9665852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of E. coli peptide deformylase bound to formate: insight into the preference for Fe2+ over Zn2+ as the active site metal.
    Jain R; Hao B; Liu RP; Chan MK
    J Am Chem Soc; 2005 Apr; 127(13):4558-9. PubMed ID: 15796505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the metal ion in formyl-peptide bond hydrolysis by a peptide deformylase active site model.
    Leopoldini M; Russo N; Toscano M
    J Phys Chem B; 2006 Jan; 110(2):1063-72. PubMed ID: 16471643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical characterization and mutational analysis of the mononuclear non-haem Fe2+ site in Dke1, a cupin-type dioxygenase from Acinetobacter johnsonii.
    Leitgeb S; Straganz GD; Nidetzky B
    Biochem J; 2009 Mar; 418(2):403-11. PubMed ID: 18973472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition and structure-activity studies of methionine hydroxamic acid derivatives with bacterial peptide deformylase.
    Grant SK; Green BG; Kozarich JW
    Bioorg Chem; 2001 Aug; 29(4):211-22. PubMed ID: 16256693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.
    Lowther WT; Orville AM; Madden DT; Lim S; Rich DH; Matthews BW
    Biochemistry; 1999 Jun; 38(24):7678-88. PubMed ID: 10387007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unique structural characteristics of peptide deformylase from pathogenic bacterium Leptospira interrogans.
    Zhou Z; Song X; Li Y; Gong W
    J Mol Biol; 2004 May; 339(1):207-15. PubMed ID: 15123432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The methionyl aminopeptidase from Escherichia coli can function as an iron(II) enzyme.
    D'souza VM; Holz RC
    Biochemistry; 1999 Aug; 38(34):11079-85. PubMed ID: 10460163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and structural analysis of mutant Escherichia coli dihydroorotases: a flexible loop stabilizes the transition state.
    Lee M; Maher MJ; Christopherson RI; Guss JM
    Biochemistry; 2007 Sep; 46(37):10538-50. PubMed ID: 17711307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystallization and preliminary X-ray crystallographic analysis of peptide deformylase (PDF) from Bacillus cereus in ligand-free and actinonin-bound forms.
    Park JK; Moon JH; Kim JH; Kim EE
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):150-2. PubMed ID: 16508119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc is an essential cofactor for type I isopentenyl diphosphate:dimethylallyl diphosphate isomerase.
    Carrigan CN; Poulter CD
    J Am Chem Soc; 2003 Jul; 125(30):9008-9. PubMed ID: 15369345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.