BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 9610381)

  • 21. Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): half-sites reactivity.
    Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2010 Nov; 49(43):9241-8. PubMed ID: 20836540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli.
    Lee CY; Szittner RB; Meighen EA
    Eur J Biochem; 1991 Oct; 201(1):161-7. PubMed ID: 1915359
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phylogenetic analysis of the lux operon distinguishes two evolutionarily distinct clades of Photobacterium leiognathi.
    Ast JC; Dunlap PV
    Arch Microbiol; 2004 May; 181(5):352-61. PubMed ID: 15034641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characteristics analysis of the luzA gene encoding chaperone from Photobacterium leiognathi related to bioluminescence.
    Lin JW; Lin BJ; Chen HY; Weng SF
    Biochem Biophys Res Commun; 1998 Mar; 244(3):838-42. PubMed ID: 9535753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Green flavoprotein from P. leiognathi: purification, characterization and identification as the product of the lux G(N) gene.
    Raibekas AA
    J Biolumin Chemilumin; 1991; 6(3):169-76. PubMed ID: 1746316
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biochemistry and genetics of bacterial bioluminescence.
    Dunlap P
    Adv Biochem Eng Biotechnol; 2014; 144():37-64. PubMed ID: 25084994
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural merodiploidy of the lux-rib operon of Photobacterium leiognathi from coastal waters of Honshu, Japan.
    Ast JC; Urbanczyk H; Dunlap PV
    J Bacteriol; 2007 Sep; 189(17):6148-58. PubMed ID: 17586644
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme.
    Lei B; Liu M; Huang S; Tu SC
    J Bacteriol; 1994 Jun; 176(12):3552-8. PubMed ID: 8206832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion.
    Tinikul R; Pitsawong W; Sucharitakul J; Nijvipakul S; Ballou DP; Chaiyen P
    Biochemistry; 2013 Oct; 52(39):6834-43. PubMed ID: 24004065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cysteine-286 as the site of acylation of the Lux-specific fatty acyl-CoA reductase.
    Lee CY; Meighen EA
    Biochim Biophys Acta; 1997 Apr; 1338(2):215-22. PubMed ID: 9128139
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Delineation of the transcriptional boundaries of the lux operon of Vibrio harveyi demonstrates the presence of two new lux genes.
    Swartzman E; Miyamoto C; Graham A; Meighen E
    J Biol Chem; 1990 Feb; 265(6):3513-7. PubMed ID: 2303459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744.
    Zenno S; Saigo K; Kanoh H; Inouye S
    J Bacteriol; 1994 Jun; 176(12):3536-43. PubMed ID: 8206830
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Mechanisms of Bacterial Bioluminescence.
    Brodl E; Winkler A; Macheroux P
    Comput Struct Biotechnol J; 2018; 16():551-564. PubMed ID: 30546856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cloning and nucleotide sequence of the gene for NADH:FMN oxidoreductase from Vibrio harveyi.
    Izumoto Y; Mori T; Yamamoto K
    Biochim Biophys Acta; 1994 Apr; 1185(2):243-6. PubMed ID: 8167139
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Cloning and expression of the lux-operon of Photorhabdus luminescens, strain Zm1: nucleotide sequence of luxAB genes and basic properties of luciferase].
    Manukhov IV; Rastorguev SM; Eroshnikov GE; Zarubina AP; Zavil'gel'skiĭ GB
    Genetika; 2000 Mar; 36(3):322-30. PubMed ID: 10779906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lateral transfer of the lux gene cluster.
    Kasai S; Okada K; Hoshino A; Iida T; Honda T
    J Biochem; 2007 Feb; 141(2):231-7. PubMed ID: 17169972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stimulated biosynthesis of flavins in Photobacterium phosphoreum IFO 13896 and the presence of complete rib operons in two species of luminous bacteria.
    Kasai S; Sumimoto T
    Eur J Biochem; 2002 Dec; 269(23):5851-60. PubMed ID: 12444973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new Vibrio fischeri lux gene precedes a bidirectional termination site for the lux operon.
    Swartzman A; Kapoor S; Graham AF; Meighen EA
    J Bacteriol; 1990 Dec; 172(12):6797-802. PubMed ID: 2254256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characteristics of endogenous flavin fluorescence of Photobacterium leiognathi luciferase and Vibrio fischeri NAD(P)H:FMN-oxidoreductase.
    Vetrova EV; Kudryasheva NS; Visser AJ; van Hoek A
    Luminescence; 2005; 20(3):205-9. PubMed ID: 15924327
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.