These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9611124)

  • 1. Release of dopamine and norepinephrine by hypoxia from PC-12 cells.
    Kumar GK; Overholt JL; Bright GR; Hui KY; Lu H; Gratzl M; Prabhakar NR
    Am J Physiol; 1998 Jun; 274(6):C1592-600. PubMed ID: 9611124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential alteration of catecholamine release during chemical hypoxia is correlated with cell toxicity and is blocked by protein kinase C inhibitors in PC12 cells.
    Kuo JS; Cheng FC; Shen CC; Ou HC; Wu TF; Huang HM
    J Cell Biochem; 2000 Aug; 79(2):191-201. PubMed ID: 10967547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmentation of calcium current by hypoxia in carotid body glomus cells.
    Summers BA; Overholt JL; Prabhakar NR
    Adv Exp Med Biol; 2000; 475():589-99. PubMed ID: 10849699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopaminergic properties of cultured rat carotid body chemoreceptors grown in normoxic and hypoxic environments.
    Jackson A; Nurse C
    J Neurochem; 1997 Aug; 69(2):645-54. PubMed ID: 9231723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alteration of catecholamines in pheochromocytoma (PC12) cells in vitro by the metabolites of chlorotriazine herbicide.
    Das PC; McElroy WK; Cooper RL
    Toxicol Sci; 2001 Jan; 59(1):127-37. PubMed ID: 11134552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential mechanisms responsible for chlorotriazine-induced alterations in catecholamines in pheochromocytoma (PC12) cells.
    Das PC; McElroy WK; Cooper RL
    Life Sci; 2003 Oct; 73(24):3123-38. PubMed ID: 14550852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hypoxia evokes catecholamine secretion from rat pheochromocytoma PC-12 cells.
    Taylor SC; Peers C
    Biochem Biophys Res Commun; 1998 Jul; 248(1):13-7. PubMed ID: 9675077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of endogenous dopamine and norepinephrine release from superfused slices of rat prefrontal cortex in vitro: modulation by D2 and alpha-2 presynaptic receptors.
    Ohmori T; Koyama T; Yamashita I
    Life Sci; 1991; 48(3):283-9. PubMed ID: 1846930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolactin augmentation of dopamine and norepinephrine release from superfused medial basal hypothalamic fragments.
    Foreman MM; Porter JC
    Endocrinology; 1981 Mar; 108(3):800-4. PubMed ID: 7460842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Muscarinic modulation of hypoxia-induced release of catecholamines from the cat carotid body.
    Wang HY; Fitzgerald RS
    Brain Res; 2002 Feb; 927(2):122-37. PubMed ID: 11821006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of adenosine on the release of acetylcholine, dopamine, and norepinephrine from the cat carotid body.
    Fitzgerald RS; Shirahata M; Wang HY; Balbir A; Chang I
    Neurosci Lett; 2004 Sep; 367(3):304-8. PubMed ID: 15337254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facilitation of dopamine and acetylcholine release by intermittent hypoxia in PC12 cells: involvement of calcium and reactive oxygen species.
    Kim DK; Natarajan N; Prabhakar NR; Kumar GK
    J Appl Physiol (1985); 2004 Mar; 96(3):1206-15; discussion 1196. PubMed ID: 14657041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salviae miltiorrhizae radix increases dopamine release of rat and pheochromocytoma PC12 cells.
    Kim CH; Koo BS; Kim KO; Kim JK; Chang YC; Lee IS
    Phytother Res; 2006 Mar; 20(3):191-9. PubMed ID: 16521109
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro.
    Vicario I; Rigual R; Obeso A; Gonzalez C
    Am J Physiol Cell Physiol; 2000 Mar; 278(3):C490-9. PubMed ID: 10712237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca channels contrasted with strong regulation of axonal dopamine release.
    Chen BT; Moran KA; Avshalumov MV; Rice ME
    J Neurochem; 2006 Feb; 96(3):645-55. PubMed ID: 16405515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of Ca2+ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells.
    Nakazawa K; Inoue K
    J Neurophysiol; 1992 Dec; 68(6):2026-32. PubMed ID: 1337102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane depolarization combined with release of calcium from internal stores does not trigger secretion from PC 12 cells.
    Ashery U; Weiss C; Sela D; Spira ME; Atlas D
    Recept Channels; 1993; 1(3):217-20. PubMed ID: 7922021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noradrenergic Modulation of Dopamine Transmission Evoked by Electrical Stimulation of the Locus Coeruleus in the Rat Brain.
    Park JW; Bhimani RV; Park J
    ACS Chem Neurosci; 2017 Sep; 8(9):1913-1924. PubMed ID: 28594540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-specific mobilization of dopamine and norepinephrine stores in cat carotid body.
    Chen J; Gomez-Nino A; Gonzalez C; Dinger B; Fidone S
    J Auton Nerv Syst; 1997 Dec; 67(1-2):109-13. PubMed ID: 9470151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of verapamil and diltiazem on N-, P- and Q-type calcium channels mediating dopamine release in rat striatum.
    Dobrev D; Milde AS; Andreas K; Ravens U
    Br J Pharmacol; 1999 May; 127(2):576-82. PubMed ID: 10385261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.