BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 9611142)

  • 1. Voltage dependence of Ca2+ sparks in intact cerebral arteries.
    Jaggar JH; Stevenson AS; Nelson MT
    Am J Physiol; 1998 Jun; 274(6):C1755-61. PubMed ID: 9611142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+-dependent K+ channels.
    Knot HJ; Standen NB; Nelson MT
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):211-21. PubMed ID: 9490841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcoplasmic reticulum calcium load regulates rat arterial smooth muscle calcium sparks and transient K(Ca) currents.
    Cheranov SY; Jaggar JH
    J Physiol; 2002 Oct; 544(Pt 1):71-84. PubMed ID: 12356881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ontogeny of local sarcoplasmic reticulum Ca2+ signals in cerebral arteries: Ca2+ sparks as elementary physiological events.
    Gollasch M; Wellman GC; Knot HJ; Jaggar JH; Damon DH; Bonev AD; Nelson MT
    Circ Res; 1998 Nov; 83(11):1104-14. PubMed ID: 9831705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries.
    Pérez GJ; Bonev AD; Patlak JB; Nelson MT
    J Gen Physiol; 1999 Feb; 113(2):229-38. PubMed ID: 9925821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intravascular pressure regulates local and global Ca(2+) signaling in cerebral artery smooth muscle cells.
    Jaggar JH
    Am J Physiol Cell Physiol; 2001 Aug; 281(2):C439-48. PubMed ID: 11443043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone.
    Jaggar JH; Wellman GC; Heppner TJ; Porter VA; Perez GJ; Gollasch M; Kleppisch T; Rubart M; Stevenson AS; Lederer WJ; Knot HJ; Bonev AD; Nelson MT
    Acta Physiol Scand; 1998 Dec; 164(4):577-87. PubMed ID: 9887980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium sparks in human coronary artery smooth muscle cells resolved by confocal imaging.
    Fürstenau M; Löhn M; Ried C; Luft FC; Haller H; Gollasch M
    J Hypertens; 2000 Sep; 18(9):1215-22. PubMed ID: 10994752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KCa channel insensitivity to Ca2+ sparks underlies fractional uncoupling in newborn cerebral artery smooth muscle cells.
    Li A; Adebiyi A; Leffler CW; Jaggar JH
    Am J Physiol Heart Circ Physiol; 2006 Sep; 291(3):H1118-25. PubMed ID: 16603686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relaxation of arterial smooth muscle by calcium sparks.
    Nelson MT; Cheng H; Rubart M; Santana LF; Bonev AD; Knot HJ; Lederer WJ
    Science; 1995 Oct; 270(5236):633-7. PubMed ID: 7570021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TNF-alpha dilates cerebral arteries via NAD(P)H oxidase-dependent Ca2+ spark activation.
    Cheranov SY; Jaggar JH
    Am J Physiol Cell Physiol; 2006 Apr; 290(4):C964-71. PubMed ID: 16267103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides.
    Porter VA; Bonev AD; Knot HJ; Heppner TJ; Stevenson AS; Kleppisch T; Lederer WJ; Nelson MT
    Am J Physiol; 1998 May; 274(5):C1346-55. PubMed ID: 9612222
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+ sparks and their function in human cerebral arteries.
    Wellman GC; Nathan DJ; Saundry CM; Perez G; Bonev AD; Penar PL; Tranmer BI; Nelson MT
    Stroke; 2002 Mar; 33(3):802-8. PubMed ID: 11872907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ diffusion and sarcoplasmic reticulum transport both contribute to [Ca2+]i decline during Ca2+ sparks in rat ventricular myocytes.
    Gómez AM; Cheng H; Lederer WJ; Bers DM
    J Physiol; 1996 Oct; 496 ( Pt 2)(Pt 2):575-81. PubMed ID: 8910239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Partial depletion of sarcoplasmic reticulum calcium does not prevent calcium sparks in rat ventricular myocytes.
    Song LS; Stern MD; Lakatta EG; Cheng H
    J Physiol; 1997 Dec; 505 ( Pt 3)(Pt 3):665-75. PubMed ID: 9457644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-sparks constitute elementary building blocks for global Ca2+-signals in myocytes of retinal arterioles.
    Tumelty J; Scholfield N; Stewart M; Curtis T; McGeown G
    Cell Calcium; 2007 May; 41(5):451-66. PubMed ID: 17027081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bay K 8644 increases resting Ca2+ spark frequency in ferret ventricular myocytes independent of Ca influx: contrast with caffeine and ryanodine effects.
    Satoh H; Katoh H; Velez P; Fill M; Bers DM
    Circ Res; 1998 Dec 14-28; 83(12):1192-204. PubMed ID: 9851936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels.
    Earley S; Heppner TJ; Nelson MT; Brayden JE
    Circ Res; 2005 Dec; 97(12):1270-9. PubMed ID: 16269659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca2+ channels, Ca2+ sparks, and regulation of arterial smooth muscle function.
    Gollasch M; Löhn M; Fürstenau M; Nelson MT; Luft FC; Haller H
    Z Kardiol; 2000; 89 Suppl 2():15-9. PubMed ID: 10769399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.