These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 9611204)

  • 1. An intragenic suppressor of cold sensitivity identifies potentially interacting bases in the peptidyl transferase center of Tetrahymena rRNA.
    Sweeney R; Yao MC
    Genetics; 1998 Jun; 149(2):937-46. PubMed ID: 9611204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A mutation in the large subunit ribosomal RNA gene of Tetrahymena confers anisomycin resistance and cold sensitivity.
    Sweeney R; Yao CH; Yao MC
    Genetics; 1991 Feb; 127(2):327-34. PubMed ID: 2004706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome.
    Green R; Samaha RR; Noller HF
    J Mol Biol; 1997 Feb; 266(1):40-50. PubMed ID: 9054969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Domain V of Giardia lamblia large-subunit rRNA: structure of the peptidyl transferase loop from an early-branching eukaryote and correlation with antibiotic sensitivity.
    Edlind TD; Cha ME; Prah GN; Katiyar SK
    Gene; 1993 Feb; 124(1):67-74. PubMed ID: 8440482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic effects of targeted mutations in the small subunit rRNA gene of Tetrahymena thermophila.
    Sweeney R; Chen L; Yao MC
    Mol Cell Biol; 1993 Aug; 13(8):4814-25. PubMed ID: 8336718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Erythromycin binding is reduced in ribosomes with conformational alterations in the 23 S rRNA peptidyl transferase loop.
    Douthwaite S; Aagaard C
    J Mol Biol; 1993 Aug; 232(3):725-31. PubMed ID: 7689111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of ribosome structure and function by rRNA base modification.
    Baxter-Roshek JL; Petrov AN; Dinman JD
    PLoS One; 2007 Jan; 2(1):e174. PubMed ID: 17245450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping important nucleotides in the peptidyl transferase centre of 23 S rRNA using a random mutagenesis approach.
    Porse BT; Garrett RA
    J Mol Biol; 1995 May; 249(1):1-10. PubMed ID: 7776364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping labeled sites in Escherichia coli ribosomal RNA: distribution of methyl groups and identification of a photoaffinity-labeled RNA region putatively at the peptidyltransferase center.
    Hall CC; Smith JE; Cooperman BS
    Biochemistry; 1985 Oct; 24(21):5702-11. PubMed ID: 3002421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes produced by bound tryptophan in the ribosome peptidyl transferase center in response to TnaC, a nascent leader peptide.
    Cruz-Vera LR; Gong M; Yanofsky C
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3598-603. PubMed ID: 16505360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome.
    Samaha RR; Green R; Noller HF
    Nature; 1995 Sep; 377(6547):309-14. PubMed ID: 7566085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites.
    Moazed D; Noller HF
    Cell; 1989 May; 57(4):585-97. PubMed ID: 2470511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxoplasma gondii: structure and characterization of the 26S ribosomal RNA and peptidyl transferase domain.
    Gagnon S; Morency MJ; Bourbeau D; Levesque RC
    Exp Parasitol; 1996 Aug; 83(3):346-51. PubMed ID: 8823251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sparsomycin-resistant mutant of Halobacterium salinarium lacks a modification at nucleotide U2603 in the peptidyl transferase centre of 23 S rRNA.
    Lázaro E; Rodriguez-Fonseca C; Porse B; Ureña D; Garrett RA; Ballesta JP
    J Mol Biol; 1996 Aug; 261(2):231-8. PubMed ID: 8757290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Base-pairing between 23S rRNA and tRNA in the ribosomal A site.
    Kim DF; Green R
    Mol Cell; 1999 Nov; 4(5):859-64. PubMed ID: 10619032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs.
    Nagano K; Nagano N
    J Theor Biol; 2007 Apr; 245(4):644-68. PubMed ID: 17196221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intramolecular recombination mechanism for the formation of the rRNA gene palindrome of Tetrahymena thermophila.
    Butler DK; Yasuda LE; Yao MC
    Mol Cell Biol; 1995 Dec; 15(12):7117-26. PubMed ID: 8524279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Implications of a functional large ribosomal RNA with only three modified nucleotides.
    Sirum-Connolly K; Peltier JM; Crain PF; McCloskey JA; Mason TL
    Biochimie; 1995; 77(1-2):30-9. PubMed ID: 7541254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a site on 23S ribosomal RNA located at the peptidyl transferase center.
    Barta A; Steiner G; Brosius J; Noller HF; Kuechler E
    Proc Natl Acad Sci U S A; 1984 Jun; 81(12):3607-11. PubMed ID: 6374660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome.
    Kirillov SV; Porse BT; Garrett RA
    RNA; 1999 Aug; 5(8):1003-13. PubMed ID: 10445875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.