These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 9611224)
1. Cisplatin inhibits synthesis of ribosomal RNA in vivo. Jordan P; Carmo-Fonseca M Nucleic Acids Res; 1998 Jun; 26(12):2831-6. PubMed ID: 9611224 [TBL] [Abstract][Full Text] [Related]
2. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. Jordan P; Mannervik M; Tora L; Carmo-Fonseca M J Cell Biol; 1996 Apr; 133(2):225-34. PubMed ID: 8609157 [TBL] [Abstract][Full Text] [Related]
3. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Beckmann H; Chen JL; O'Brien T; Tjian R Science; 1995 Dec; 270(5241):1506-9. PubMed ID: 7491500 [TBL] [Abstract][Full Text] [Related]
4. Recruitment of TATA-binding protein-TAFI complex SL1 to the human ribosomal DNA promoter is mediated by the carboxy-terminal activation domain of upstream binding factor (UBF) and is regulated by UBF phosphorylation. Tuan JC; Zhai W; Comai L Mol Cell Biol; 1999 Apr; 19(4):2872-9. PubMed ID: 10082553 [TBL] [Abstract][Full Text] [Related]
5. Cisplatin-DNA adducts inhibit ribosomal RNA synthesis by hijacking the transcription factor human upstream binding factor. Zhai X; Beckmann H; Jantzen HM; Essigmann JM Biochemistry; 1998 Nov; 37(46):16307-15. PubMed ID: 9819223 [TBL] [Abstract][Full Text] [Related]
6. Cisplatin-DNA adducts are molecular decoys for the ribosomal RNA transcription factor hUBF (human upstream binding factor). Treiber DK; Zhai X; Jantzen HM; Essigmann JM Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5672-6. PubMed ID: 8202546 [TBL] [Abstract][Full Text] [Related]
7. Nucleolar protein upstream binding factor is sequestered into adenovirus DNA replication centres during infection without affecting RNA polymerase I location or ablating rRNA synthesis. Lawrence FJ; McStay B; Matthews DA J Cell Sci; 2006 Jun; 119(Pt 12):2621-31. PubMed ID: 16763197 [TBL] [Abstract][Full Text] [Related]
8. Initiation of nucleolar assembly is independent of RNA polymerase I transcription. Dousset T; Wang C; Verheggen C; Chen D; Hernandez-Verdun D; Huang S Mol Biol Cell; 2000 Aug; 11(8):2705-17. PubMed ID: 10930464 [TBL] [Abstract][Full Text] [Related]
9. The RNA polymerase I transcription factor, upstream binding factor, interacts directly with the TATA box-binding protein. Kwon H; Green MR J Biol Chem; 1994 Dec; 269(48):30140-6. PubMed ID: 7982918 [TBL] [Abstract][Full Text] [Related]
10. Depletion of the cisplatin targeted HMGB-box factor UBF selectively induces p53-independent apoptotic death in transformed cells. Hamdane N; Herdman C; Mars JC; Stefanovsky V; Tremblay MG; Moss T Oncotarget; 2015 Sep; 6(29):27519-36. PubMed ID: 26317157 [TBL] [Abstract][Full Text] [Related]
11. SV40 large T antigen binds to the TBP-TAF(I) complex SL1 and coactivates ribosomal RNA transcription. Zhai W; Tuan JA; Comai L Genes Dev; 1997 Jun; 11(12):1605-17. PubMed ID: 9203586 [TBL] [Abstract][Full Text] [Related]
12. Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits. Zomerdijk JC; Beckmann H; Comai L; Tjian R Science; 1994 Dec; 266(5193):2015-8. PubMed ID: 7801130 [TBL] [Abstract][Full Text] [Related]
13. The cell cycle regulatory factor TAF1 stimulates ribosomal DNA transcription by binding to the activator UBF. Lin CY; Tuan J; Scalia P; Bui T; Comai L Curr Biol; 2002 Dec; 12(24):2142-6. PubMed ID: 12498690 [TBL] [Abstract][Full Text] [Related]
14. Involvement of phosphatidylinositol 4,5-bisphosphate in RNA polymerase I transcription. Yildirim S; Castano E; Sobol M; Philimonenko VV; Dzijak R; Venit T; Hozák P J Cell Sci; 2013 Jun; 126(Pt 12):2730-9. PubMed ID: 23591814 [TBL] [Abstract][Full Text] [Related]
15. Mouse rRNA gene transcription factor mUBF requires both HMG-box1 and an acidic tail for nucleolar accumulation: molecular analysis of the nucleolar targeting mechanism. Maeda Y; Hisatake K; Kondo T; Hanada K; Song CZ; Nishimura T; Muramatsu M EMBO J; 1992 Oct; 11(10):3695-704. PubMed ID: 1396565 [TBL] [Abstract][Full Text] [Related]
16. HMG box 4 is the principal determinant of species specificity in the RNA polymerase I transcription factor UBF. Cairns C; McStay B Nucleic Acids Res; 1995 Nov; 23(22):4583-90. PubMed ID: 8524646 [TBL] [Abstract][Full Text] [Related]
17. Mitotic silencing of human rRNA synthesis: inactivation of the promoter selectivity factor SL1 by cdc2/cyclin B-mediated phosphorylation. Heix J; Vente A; Voit R; Budde A; Michaelidis TM; Grummt I EMBO J; 1998 Dec; 17(24):7373-81. PubMed ID: 9857193 [TBL] [Abstract][Full Text] [Related]
18. The RNA polymerase I-specific transcription initiation factor UBF is associated with transcriptionally active and inactive ribosomal genes. Zatsepina OV; Voit R; Grummt I; Spring H; Semenov MV; Trendelenburg MF Chromosoma; 1993 Nov; 102(9):599-611. PubMed ID: 8306821 [TBL] [Abstract][Full Text] [Related]
19. DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Stefanovsky VY; Pelletier G; Bazett-Jones DP; Crane-Robinson C; Moss T Nucleic Acids Res; 2001 Aug; 29(15):3241-7. PubMed ID: 11470882 [TBL] [Abstract][Full Text] [Related]
20. Involvement of in situ conformation of ribosomal genes and selective distribution of upstream binding factor in rRNA transcription. Junéra HR; Masson C; Géraud G; Suja J; Hernandez-Verdun D Mol Biol Cell; 1997 Jan; 8(1):145-56. PubMed ID: 9017602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]