BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9611767)

  • 1. Prebiotic chemistry of phosphonic acids: products derived from phosphonoacetaldehyde in the presence of formaldehyde.
    De Graaf RM; Visscher J; Schwartz AW
    Orig Life Evol Biosph; 1998 Jun; 28(3):271-82. PubMed ID: 9611767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mineral catalysis of a potentially prebiotic aldol condensation.
    De Graaf RM; Visscher J; Xu Y; Arrhenius G; Schwartz AW
    J Mol Evol; 1998 Nov; 47(5):501-7. PubMed ID: 9797400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of conjugate adducts formed in the reactions of malonaldehyde-acetaldehyde and malonaldehyde-formaldehyde with cytidine.
    Pluskota-Karwatka D; Le Curieux F; Munter T; Sjöholm R; Kronberg L
    Chem Res Toxicol; 2002 Feb; 15(2):110-7. PubMed ID: 11849036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prebiotic amino acid thioester synthesis: thiol-dependent amino acid synthesis from formose substrates (formaldehyde and glycolaldehyde) and ammonia.
    Weber AL
    Orig Life Evol Biosph; 1998 Jun; 28(3):259-70. PubMed ID: 9611766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(allylamine) beads as selective sorbent for preconcentration of formaldehyde and acetaldehyde in high-performance liquid chromatographic analysis.
    Kiba N; Yagi R; Sun L; Tachibana M; Tani K; Koizumi H; Suzuki T
    J Chromatogr A; 2000 Jul; 886(1-2):83-7. PubMed ID: 10950278
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prebiotic amino acids as asymmetric catalysts.
    Pizzarello S; Weber AL
    Science; 2004 Feb; 303(5661):1151. PubMed ID: 14976304
    [No Abstract]   [Full Text] [Related]  

  • 7. Aldolisation of bis(glycolaldehyde) phosphate and formaldehyde.
    Smith JM; Sutherland JD
    Chembiochem; 2005 Nov; 6(11):1980-2. PubMed ID: 16172991
    [No Abstract]   [Full Text] [Related]  

  • 8. The sugar model: catalysis by amines and amino acid products.
    Weber AL
    Orig Life Evol Biosph; 2001; 31(1-2):71-86. PubMed ID: 11296525
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of conjugate adducts in the reactions of malonaldehyde-acetaldehyde and malonaldehyde-formaldehyde with guanosine.
    Pluskota-Karwatka D; Le Curieux F; Munter T; Sjöholm R; Kronberg L
    Chem Res Toxicol; 2005 Feb; 18(2):300-7. PubMed ID: 15720136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Detection of binding of three aldehyde compounds with DNA using high performance liquid chromatograph].
    Feng B; Shao H; Zhang H
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2008 Feb; 26(2):86-8. PubMed ID: 18445316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plausibly prebiotic synthesis of phosphonic acids.
    de Graaf RM; Visscher J; Schwartz AW
    Nature; 1995 Nov; 378(6556):474-7. PubMed ID: 7477402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Phosphonic Acids as Prebiotic Carriers of Phosphorus.
    De Graaf RM ; Visscher J; Schwartz AW
    J Mol Evol; 1997 Mar; 44(3):237-41. PubMed ID: 9060389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric assembly of aldose carbohydrates from formaldehyde and glycolaldehyde by tandem biocatalytic aldol reactions.
    Szekrenyi A; Garrabou X; Parella T; Joglar J; Bujons J; Clapés P
    Nat Chem; 2015 Sep; 7(9):724-9. PubMed ID: 26291944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction.
    Kishida H; Jin F; Yan X; Moriya T; Enomoto H
    Carbohydr Res; 2006 Nov; 341(15):2619-23. PubMed ID: 16952343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Abiotic Ribose Synthesis Under Aqueous Environments with Various Chemical Conditions.
    Ono C; Sunami S; Ishii Y; Kim HJ; Kakegawa T; Benner SA; Furukawa Y
    Astrobiology; 2024 May; 24(5):489-497. PubMed ID: 38696654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of hexahydropyridazine-3-phosphonic acid.
    Kaname M; Yoshinaga K; Arakawa Y; Yoshifuji S
    Chem Pharm Bull (Tokyo); 2004 Jan; 52(1):160-2. PubMed ID: 14709889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of fluorescent 2'-deoxyadenosine adducts formed in reactions of conjugates of malonaldehyde and acetaldehyde, and of malonaldehyde and formaldehyde.
    Le Curieux F; Pluskota D; Munter T; Sjöholm R; Kronberg L
    Chem Res Toxicol; 2000 Dec; 13(12):1228-34. PubMed ID: 11123963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivatization of aminoalkylphosphonic acids for characterization by gas chromatography mass spectrometry.
    Rueppel ML; Suba LA; Marvel JT
    Biomed Mass Spectrom; 1976 Feb; 3(1):28-31. PubMed ID: 1260113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of amino acid precursors with insoluble organic matter in planetesimals with aqueous activity.
    Kebukawa Y; Chan QH; Tachibana S; Kobayashi K; Zolensky ME
    Sci Adv; 2017 Mar; 3(3):e1602093. PubMed ID: 28345041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydroxymethanesulfonate from Volcanic Sulfur Dioxide: A "Mineral" Reservoir for Formaldehyde and Other Simple Carbohydrates in Prebiotic Chemistry.
    Kawai J; McLendon DC; Kim HJ; Benner SA
    Astrobiology; 2019 Apr; 19(4):506-516. PubMed ID: 30615473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.