These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 9611806)
1. Fused nucleoids resegregate faster than cell elongation in Escherichia coli pbpB(Ts) filaments after release from chloramphenicol inhibition. Van Helvoort JMLM; Huls PG; Vischer NOE; Woldringh CL Microbiology (Reading); 1998 May; 144 ( Pt 5)():1309-1317. PubMed ID: 9611806 [TBL] [Abstract][Full Text] [Related]
2. Nucleoid partitioning in Escherichia coli during steady-state growth and upon recovery from chloramphenicol treatment. van Helvoort JM; Woldringh CL Mol Microbiol; 1994 Aug; 13(4):577-83. PubMed ID: 7527896 [TBL] [Abstract][Full Text] [Related]
3. Chloramphenicol causes fusion of separated nucleoids in Escherichia coli K-12 cells and filaments. van Helvoort JM; Kool J; Woldringh CL J Bacteriol; 1996 Jul; 178(14):4289-93. PubMed ID: 8763959 [TBL] [Abstract][Full Text] [Related]
4. Nucleoid condensation and cell division in Escherichia coli MX74T2 ts52 after inhibition of protein synthesis. Zusman DR; Carbonell A; Haga JY J Bacteriol; 1973 Sep; 115(3):1167-78. PubMed ID: 4580561 [TBL] [Abstract][Full Text] [Related]
5. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. Sun Q; Margolin W J Bacteriol; 2004 Jun; 186(12):3951-9. PubMed ID: 15175309 [TBL] [Abstract][Full Text] [Related]
10. Partitioning, movement, and positioning of nucleoids in Mycoplasma capricolum. Seto S; Miyata M J Bacteriol; 1999 Oct; 181(19):6073-80. PubMed ID: 10498720 [TBL] [Abstract][Full Text] [Related]
11. Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor. Harrington EW; Trun NJ J Bacteriol; 1997 Apr; 179(7):2435-9. PubMed ID: 9079934 [TBL] [Abstract][Full Text] [Related]
12. Underlying regularity in the shapes of nucleoids of Escherichia coli: implications for nucleoid organization and partition. Zimmerman SB J Struct Biol; 2003 May; 142(2):256-65. PubMed ID: 12713953 [TBL] [Abstract][Full Text] [Related]
13. Influence of the nucleoid on placement of FtsZ and MinE rings in Escherichia coli. Sun Q; Margolin W J Bacteriol; 2001 Feb; 183(4):1413-22. PubMed ID: 11157955 [TBL] [Abstract][Full Text] [Related]
14. Nucleoid-independent identification of cell division sites in Escherichia coli. Cook WR; Rothfield LI J Bacteriol; 1999 Mar; 181(6):1900-5. PubMed ID: 10074085 [TBL] [Abstract][Full Text] [Related]
15. Release of compact nucleoids with characteristic shapes from Escherichia coli. Zimmerman SB; Murphy LD J Bacteriol; 2001 Sep; 183(17):5041-9. PubMed ID: 11489856 [TBL] [Abstract][Full Text] [Related]
16. Organization of ribosomes and nucleoids in Escherichia coli cells during growth and in quiescence. Chai Q; Singh B; Peisker K; Metzendorf N; Ge X; Dasgupta S; Sanyal S J Biol Chem; 2014 Apr; 289(16):11342-11352. PubMed ID: 24599955 [TBL] [Abstract][Full Text] [Related]
17. Toporegulation of bacterial division according to the nucleoid occlusion model. Woldringh CL; Mulder E; Huls PG; Vischer N Res Microbiol; 1991; 142(2-3):309-20. PubMed ID: 1925029 [TBL] [Abstract][Full Text] [Related]