These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 9612000)

  • 1. Composite hydrogels for implants.
    Ambrosio L; De Santis R; Nicolais L
    Proc Inst Mech Eng H; 1998; 212(2):93-9. PubMed ID: 9612000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical behaviour of composite artificial tendons and ligaments.
    Iannace S; Sabatini G; Ambrosio L; Nicolais L
    Biomaterials; 1995 Jun; 16(9):675-80. PubMed ID: 7578769
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic-mechanical properties of a novel composite intervertebral disc prosthesis.
    Gloria A; Causa F; De Santis R; Netti PA; Ambrosio L
    J Mater Sci Mater Med; 2007 Nov; 18(11):2159-65. PubMed ID: 17619987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite.
    Giordano C; Causa F; Silvio LD; Ambrosio L
    J Mater Sci Mater Med; 2007 Apr; 18(4):653-60. PubMed ID: 17546428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multi-component fiber-reinforced PHEMA-based hydrogel/HAPEX™ device for customized intervertebral disc prosthesis.
    Gloria A; De Santis R; Ambrosio L; Causa F; Tanner KE
    J Biomater Appl; 2011 May; 25(8):795-810. PubMed ID: 20511384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic behavior of composite ligament prostheses.
    Ambrosio L; De Santis R; Iannace S; Netti PA; Nicolais L
    J Biomed Mater Res; 1998 Oct; 42(1):6-12. PubMed ID: 9740001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gradient composite materials for artificial intervertebral discs.
    Migacz K; Chłopek J; Morawska-Chochół A; Ambroziak M
    Acta Bioeng Biomech; 2014; 16(3):3-12. PubMed ID: 25306938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational analysis of cartilage implants based on an interpenetrated polymer network for tissue repairing.
    Manzano S; Poveda-Reyes S; Ferrer GG; Ochoa I; Hamdy Doweidar M
    Comput Methods Programs Biomed; 2014 Oct; 116(3):249-59. PubMed ID: 24997064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential of hydrogels as synthetic articular cartilage.
    Corkhill PH; Trevett AS; Tighe BJ
    Proc Inst Mech Eng H; 1990; 204(3):147-55. PubMed ID: 2133781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanofibrillated cellulose composite hydrogel for the replacement of the nucleus pulposus.
    Borges AC; Eyholzer C; Duc F; Bourban PE; Tingaut P; Zimmermann T; Pioletti DP; Månson JA
    Acta Biomater; 2011 Sep; 7(9):3412-21. PubMed ID: 21651996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basic structural parameters for the design of composite structures as ligament augmentation devices.
    Causa F; Sarracino F; De Santis R; Netti PA; Ambrosio L; Nicolais L
    J Appl Biomater Biomech; 2006; 4(1):21-30. PubMed ID: 20799213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyurethane/poly(hydroxyethyl methacrylate) semi-interpenetrating polymer networks for biomedical applications.
    Karabanova LV; Lloyd AW; Mikhalovsky SV; Helias M; Phillips GJ; Rose SF; Mikhalovska L; Boiteux G; Sergeeva LM; Lutsyk ED; Svyatyna A
    J Mater Sci Mater Med; 2006 Dec; 17(12):1283-96. PubMed ID: 17143760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
    Kocen R; Gasik M; Gantar A; Novak S
    Biomed Mater; 2017 Mar; 12(2):025004. PubMed ID: 28106535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poro-viscoelastic constitutive modeling of unconfined creep of hydrogels using finite element analysis with integrated optimization method.
    Liu K; Ovaert TC
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):440-50. PubMed ID: 21316632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel semi-interpenetrating hydrogel networks with enhanced mechanical properties and thermoresponsive engineered drug delivery, designed as bioactive endotracheal tube biomaterials.
    Jones DS; Andrews GP; Caldwell DL; Lorimer C; Gorman SP; McCoy CP
    Eur J Pharm Biopharm; 2012 Nov; 82(3):563-71. PubMed ID: 22940251
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite hydrogels for nucleus pulposus tissue engineering.
    Strange DG; Oyen ML
    J Mech Behav Biomed Mater; 2012 Jul; 11():16-26. PubMed ID: 22658151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of specimen thickness on the nanoindentation of hydrogels: measuring the mechanical properties of soft contact lenses.
    Selby A; Maldonado-Codina C; Derby B
    J Mech Behav Biomed Mater; 2014 Jul; 35():144-56. PubMed ID: 24378734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interfacial optimization of fiber-reinforced hydrogel composites for soft fibrous tissue applications.
    Holloway JL; Lowman AM; VanLandingham MR; Palmese GR
    Acta Biomater; 2014 Aug; 10(8):3581-9. PubMed ID: 24814880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical viability of a thermoplastic elastomer hydrogel as a soft tissue replacement material.
    Fischenich KM; Lewis JT; Bailey TS; Haut Donahue TL
    J Mech Behav Biomed Mater; 2018 Mar; 79():341-347. PubMed ID: 29425534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.