These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 9612005)

  • 21. Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications.
    Bellucci D; Sola A; Cannillo V
    J Biomed Mater Res A; 2016 Apr; 104(4):1030-56. PubMed ID: 26646669
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wettability and surface free energy of polarised ceramic biomaterials.
    Nakamura M; Hori N; Namba S; Toyama T; Nishimiya N; Yamashita K
    Biomed Mater; 2015 Jan; 10(1):011001. PubMed ID: 25585714
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synergistic effects of bisphosphonate and calcium phosphate nanoparticles on peri-implant bone responses in osteoporotic rats.
    Alghamdi HS; Bosco R; Both SK; Iafisco M; Leeuwenburgh SC; Jansen JA; van den Beucken JJ
    Biomaterials; 2014 Jul; 35(21):5482-90. PubMed ID: 24731712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants.
    Zhang Y; Zhang M
    J Biomed Mater Res; 2002 Jul; 61(1):1-8. PubMed ID: 12001239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [A study of bone-like apatite formation on calcium phosphate ceramics in different kinds of animals in vivo].
    Duan Y; Wu Y; Wang C; Chen J; Zhang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):22-5. PubMed ID: 12744154
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vivo evaluation of plasma-sprayed titanium coating after alkali modification.
    Xue W; Liu X; Zheng X; Ding C
    Biomaterials; 2005 Jun; 26(16):3029-37. PubMed ID: 15603798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo evaluation of bioactive glass-based coatings on dental implants in a dog implantation model.
    van Oirschot BA; Alghamdi HS; Närhi TO; Anil S; Al Farraj Aldosari A; van den Beucken JJ; Jansen JA
    Clin Oral Implants Res; 2014 Jan; 25(1):21-8. PubMed ID: 23078340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications.
    Chen Q; Baino F; Pugno NM; Vitale-Brovarone C
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1530-8. PubMed ID: 23827605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Significance of synthetic calcium phosphate ceramics as a bone replacement material].
    Eitenmüller J
    Orthopade; 1986 Feb; 15(1):30-5. PubMed ID: 3960537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Osteoconductivity and osteoinductivity of porous hydroxyapatite coatings deposited by liquid precursor plasma spraying: in vivo biological response study.
    Huang Y; He J; Gan L; Liu X; Wu Y; Wu F; Gu ZW
    Biomed Mater; 2014 Nov; 9(6):065007. PubMed ID: 25384201
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants.
    Wang C; Karlis GA; Anderson GI; Dunstan CR; Carbone A; Berger G; Ploska U; Zreiqat H
    J Biomed Mater Res A; 2009 Aug; 90(2):419-28. PubMed ID: 18523954
    [TBL] [Abstract][Full Text] [Related]  

  • 32. BS-SEM evaluation of the tissular interactions between cortical bone and calcium-phosphate covered titanium implants.
    Manzanares MC; Franch J; Carvalho P; Belmonte AM; Tusell J; Franch B; Fernandez JM; Clèries L; Morenza JL
    Bull Group Int Rech Sci Stomatol Odontol; 2001; 43(3):100-8. PubMed ID: 11938587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A plastic composite of alginate with calcium phosphate granulate as implant material: an in vivo study.
    Klein CP; van der Lubbe HB; de Groot K
    Biomaterials; 1987 Jul; 8(4):308-10. PubMed ID: 3663809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon substitution in the calcium phosphate bioceramics.
    Pietak AM; Reid JW; Stott MJ; Sayer M
    Biomaterials; 2007 Oct; 28(28):4023-32. PubMed ID: 17544500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study of different beta-whitlockite ceramics in rabbit cortical bone with regard to their biodegradation behaviour.
    Klein CP; de Groot K; Driessen AA; van der Lubbe HB
    Biomaterials; 1986 Mar; 7(2):144-6. PubMed ID: 3708065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resolving the CaP-bone interface: a review of discoveries with light and electron microscopy.
    Grandfield K; Palmquist A; Engqvist H; Thomsen P
    Biomatter; 2012; 2(1):15-23. PubMed ID: 23507782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of biodegradable beta-whitlockite ceramics with bone tissue: an in vivo study.
    Klein CP; de Groot K; Driessen AA; van der Lubbe HB
    Biomaterials; 1985 May; 6(3):189-92. PubMed ID: 4005363
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Comparative experimental animal studies on bone regeneration after implantation of various calcium phosphate ceramics].
    Wagner W; Wahlmann UW
    Dtsch Zahnarztl Z; 1985 Jun; 40(6):664-7. PubMed ID: 3868572
    [No Abstract]   [Full Text] [Related]  

  • 39. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation-bioresorption.
    LeGeros RZ; Parsons JR; Daculsi G; Driessens F; Lee D; Liu ST; Metsger S; Peterson D; Walker M
    Ann N Y Acad Sci; 1988; 523():268-71. PubMed ID: 2837944
    [No Abstract]   [Full Text] [Related]  

  • 40. Calcium phosphate coatings on magnesium alloys for biomedical applications: a review.
    Shadanbaz S; Dias GJ
    Acta Biomater; 2012 Jan; 8(1):20-30. PubMed ID: 22040686
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.