These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 9612215)
1. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Pourati J; Maniotis A; Spiegel D; Schaffer JL; Butler JP; Fredberg JJ; Ingber DE; Stamenovic D; Wang N Am J Physiol; 1998 May; 274(5):C1283-9. PubMed ID: 9612215 [TBL] [Abstract][Full Text] [Related]
2. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Wang N; Ingber DE Biophys J; 1994 Jun; 66(6):2181-9. PubMed ID: 8075352 [TBL] [Abstract][Full Text] [Related]
3. Mechanical interactions among cytoskeletal filaments. Wang N Hypertension; 1998 Jul; 32(1):162-5. PubMed ID: 9674654 [TBL] [Abstract][Full Text] [Related]
4. The role of prestress and architecture of the cytoskeleton and deformability of cytoskeletal filaments in mechanics of adherent cells: a quantitative analysis. Stamenović D; Coughlin MF J Theor Biol; 1999 Nov; 201(1):63-74. PubMed ID: 10534436 [TBL] [Abstract][Full Text] [Related]
5. Divided medium-based model for analyzing the dynamic reorganization of the cytoskeleton during cell deformation. Milan JL; Wendling-Mansuy S; Jean M; Chabrand P Biomech Model Mechanobiol; 2007 Nov; 6(6):373-90. PubMed ID: 17063370 [TBL] [Abstract][Full Text] [Related]
6. Mapping cell-matrix stresses during stretch reveals inelastic reorganization of the cytoskeleton. Gavara N; Roca-Cusachs P; Sunyer R; Farré R; Navajas D Biophys J; 2008 Jul; 95(1):464-71. PubMed ID: 18359792 [TBL] [Abstract][Full Text] [Related]
7. Cytoskeletal mechanics in confluent epithelial cells probed through integrins and E-cadherins. Potard US; Butler JP; Wang N Am J Physiol; 1997 May; 272(5 Pt 1):C1654-63. PubMed ID: 9176157 [TBL] [Abstract][Full Text] [Related]
8. Models of cytoskeletal mechanics of adherent cells. Stamenović D; Ingber DE Biomech Model Mechanobiol; 2002 Jun; 1(1):95-108. PubMed ID: 14586710 [TBL] [Abstract][Full Text] [Related]
9. Tensegrity behaviour of cortical and cytosolic cytoskeletal components in twisted living adherent cells. Laurent VM; Cañadas P; Fodil R; Planus E; Asnacios A; Wendling S; Isabey D Acta Biotheor; 2002; 50(4):331-56. PubMed ID: 12675535 [TBL] [Abstract][Full Text] [Related]
10. Localized mechanical stress induces time-dependent actin cytoskeletal remodeling and stiffening in cultured airway smooth muscle cells. Deng L; Fairbank NJ; Fabry B; Smith PG; Maksym GN Am J Physiol Cell Physiol; 2004 Aug; 287(2):C440-8. PubMed ID: 15070813 [TBL] [Abstract][Full Text] [Related]
11. Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling. Deng L; Fairbank NJ; Cole DJ; Fredberg JJ; Maksym GN J Appl Physiol (1985); 2005 Aug; 99(2):634-41. PubMed ID: 15845778 [TBL] [Abstract][Full Text] [Related]
12. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts. Entcheva E; Bien H Integr Biol (Camb); 2009 Feb; 1(2):212-9. PubMed ID: 20023805 [TBL] [Abstract][Full Text] [Related]
13. A prestressed cable network model of the adherent cell cytoskeleton. Coughlin MF; Stamenović D Biophys J; 2003 Feb; 84(2 Pt 1):1328-36. PubMed ID: 12547813 [TBL] [Abstract][Full Text] [Related]
14. Partitioning of cortical and deep cytoskeleton responses from transient magnetic bead twisting. Laurent VM; Fodil R; Cañadas P; Féréol S; Louis B; Planus E; Isabey D Ann Biomed Eng; 2003 Nov; 31(10):1263-78. PubMed ID: 14649500 [TBL] [Abstract][Full Text] [Related]
15. Contributions of the active and passive components of the cytoskeletal prestress to stiffening of airway smooth muscle cells. Rosenblatt N; Hu S; Suki B; Wang N; Stamenović D Ann Biomed Eng; 2007 Feb; 35(2):224-34. PubMed ID: 17151921 [TBL] [Abstract][Full Text] [Related]
16. A discrete cell cycle checkpoint in late G(1) that is cytoskeleton-dependent and MAP kinase (Erk)-independent. Huang S; Ingber DE Exp Cell Res; 2002 May; 275(2):255-64. PubMed ID: 11969294 [TBL] [Abstract][Full Text] [Related]
17. A cellular tensegrity model to analyse the structural viscoelasticity of the cytoskeleton. Cañadas P; Laurent VM; Oddou C; Isabey D; Wendling S J Theor Biol; 2002 Sep; 218(2):155-73. PubMed ID: 12381289 [TBL] [Abstract][Full Text] [Related]
18. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. Morita T; Kurihara H; Maemura K; Yoshizumi M; Yazaki Y J Clin Invest; 1993 Oct; 92(4):1706-12. PubMed ID: 8408624 [TBL] [Abstract][Full Text] [Related]
19. Sensitivity of alveolar macrophages to substrate mechanical and adhesive properties. Féréol S; Fodil R; Labat B; Galiacy S; Laurent VM; Louis B; Isabey D; Planus E Cell Motil Cytoskeleton; 2006 Jun; 63(6):321-40. PubMed ID: 16634082 [TBL] [Abstract][Full Text] [Related]
20. Distending stress of the cytoskeleton is a key determinant of cell rheological behavior. Rosenblatt N; Hu S; Chen J; Wang N; Stamenović D Biochem Biophys Res Commun; 2004 Aug; 321(3):617-22. PubMed ID: 15358151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]