BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 9612242)

  • 21. Non-oxidative synthesis of pentose 5-phosphate from hexose 6-phosphate and triose phosphate by the L-type pentose pathway.
    Williams JF; Blackmore PF
    Int J Biochem; 1983; 15(6):797-816. PubMed ID: 6862092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling and experimental design for metabolic flux analysis of lysine-producing Corynebacteria by mass spectrometry.
    Wittmann C; Heinzle E
    Metab Eng; 2001 Apr; 3(2):173-91. PubMed ID: 11289793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of [13C]glycerol carbon via the pentose cycle. Implications for gluconeogenesis measurement by mass isotoper distribution analysis.
    Kurland IJ; Alcivar A; Bassilian S; Lee WN
    J Biol Chem; 2000 Nov; 275(47):36787-93. PubMed ID: 10960476
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 13C n.m.r. isotopomer and computer-simulation studies of the non-oxidative pentose phosphate pathway of human erythrocytes.
    Berthon HA; Bubb WA; Kuchel PW
    Biochem J; 1993 Dec; 296 ( Pt 2)(Pt 2):379-87. PubMed ID: 8257428
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantitative determination of the main glucose metabolic fluxes in human erythrocytes by 13C- and 1H-MR spectroscopy.
    Messana I; Misiti F; el-Sherbini S; Giardina B; Castagnola M
    J Biochem Biophys Methods; 1999 Feb; 39(1-2):63-84. PubMed ID: 10344501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition of the oxidative and nonoxidative pentose phosphate pathways by somatostatin: a possible mechanism of antitumor action.
    Boros LG; Brandes JL; Yusuf FI; Cascante M; Williams RD; Schirmer WJ
    Med Hypotheses; 1998 Jun; 50(6):501-6. PubMed ID: 9710324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Correction of 13C mass isotopomer distributions for natural stable isotope abundance.
    Fernandez CA; Des Rosiers C; Previs SF; David F; Brunengraber H
    J Mass Spectrom; 1996 Mar; 31(3):255-62. PubMed ID: 8799277
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis.
    Katz J; Rognstad R
    Biochemistry; 1967 Jul; 6(7):2227-47. PubMed ID: 6049456
    [No Abstract]   [Full Text] [Related]  

  • 29. The pentose phosphate pathway in Trypanosoma cruzi.
    Maugeri DA; Cazzulo JJ
    FEMS Microbiol Lett; 2004 May; 234(1):117-23. PubMed ID: 15109729
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fermented wheat germ extract inhibits glycolysis/pentose cycle enzymes and induces apoptosis through poly(ADP-ribose) polymerase activation in Jurkat T-cell leukemia tumor cells.
    Comin-Anduix B; Boros LG; Marin S; Boren J; Callol-Massot C; Centelles JJ; Torres JL; Agell N; Bassilian S; Cascante M
    J Biol Chem; 2002 Nov; 277(48):46408-14. PubMed ID: 12351627
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nonoxidative pentose phosphate pathways and their direct role in ribose synthesis in tumors: is cancer a disease of cellular glucose metabolism?
    Boros LG; Lee PW; Brandes JL; Cascante M; Muscarella P; Schirmer WJ; Melvin WS; Ellison EC
    Med Hypotheses; 1998 Jan; 50(1):55-9. PubMed ID: 9488183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transforming growth factor beta2 promotes glucose carbon incorporation into nucleic acid ribose through the nonoxidative pentose cycle in lung epithelial carcinoma cells.
    Boros LG; Torday JS; Lim S; Bassilian S; Cascante M; Lee WN
    Cancer Res; 2000 Mar; 60(5):1183-5. PubMed ID: 10728670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of transketolase modifications on carbon flow to the purine-nucleotide pathway in Corynebacterium ammoniagenes.
    Kamada N; Yasuhara A; Takano Y; Nakano T; Ikeda M
    Appl Microbiol Biotechnol; 2001 Sep; 56(5-6):710-7. PubMed ID: 11601619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic loss of deuterium from isotopically labeled glucose.
    Ben-Yoseph O; Kingsley PB; Ross BD
    Magn Reson Med; 1994 Sep; 32(3):405-9. PubMed ID: 7984074
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The pentose shunt in wild-type and glucose-6-phosphate dehydrogenase deficient Drosophila melanogaster.
    Geer BW; Bowman JT; Simmons JR
    J Exp Zool; 1974 Jan; 187(1):77-86. PubMed ID: 4149211
    [No Abstract]   [Full Text] [Related]  

  • 36. Metabolism of alpha-D-[1,2-13C]glucose pentaacetate and alpha-D-glucose penta[2-13C]acetate in rat hepatocytes.
    Malaisse WJ; Ladrière L; Kadiata MM; Verbruggen I; Willem R
    Arch Biochem Biophys; 2000 Sep; 381(1):61-6. PubMed ID: 11019820
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High control coefficient of transketolase in the nonoxidative pentose phosphate pathway of human erythrocytes: NMR, antibody, and computer simulation studies.
    Berthon HA; Kuchel PW; Nixon PF
    Biochemistry; 1992 Dec; 31(51):12792-8. PubMed ID: 1463749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pathways for the synthesis of sorbitol from 13C-labeled hexoses, pentose, and glycerol in renal papillary tissue.
    Jans AW; Grunewald RW; Kinne RK
    Magn Reson Med; 1989 Mar; 9(3):419-22. PubMed ID: 2496284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [5-3H]glucose overestimates glycolytic flux in isolated working rat heart: role of the pentose phosphate pathway.
    Goodwin GW; Cohen DM; Taegtmeyer H
    Am J Physiol Endocrinol Metab; 2001 Mar; 280(3):E502-8. PubMed ID: 11171606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantitation of erythrocyte pentose pathway flux with [2-13C]glucose and 1H NMR analysis of the lactate methyl signal.
    Delgado TC; Castro MM; Geraldes CF; Jones JG
    Magn Reson Med; 2004 Jun; 51(6):1283-6. PubMed ID: 15170851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.