BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 9612337)

  • 21. Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids.
    Araujo CA; Araujo NA; Daher EF; Oliveira JD; Kubrusly M; Duarte PM; Silva SL; Araujo SM
    Am J Trop Med Hyg; 2013 Mar; 88(3):592-5. PubMed ID: 23339205
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tumor necrosis factor-alpha induces renal cyclooxygenase-2 expression in response to hypercalcemia.
    Battula S; Hao S; Pedraza PL; Stier CT; Ferreri NR
    Prostaglandins Other Lipid Mediat; 2012 Oct; 99(1-2):45-50. PubMed ID: 22800939
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity.
    Su H; Carter CB; Fröhlich O; Cummings RD; Chen G
    Am J Physiol Renal Physiol; 2012 Jul; 303(2):F201-8. PubMed ID: 22535801
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calcium-sensing receptor and aquaporin 2 interplay in hypercalciuria-associated renal concentrating defect in humans. An in vivo and in vitro study.
    Procino G; Mastrofrancesco L; Tamma G; Lasorsa DR; Ranieri M; Stringini G; Emma F; Svelto M; Valenti G
    PLoS One; 2012; 7(3):e33145. PubMed ID: 22403735
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption.
    Pan W; Borovac J; Spicer Z; Hoenderop JG; Bindels RJ; Shull GE; Doschak MR; Cordat E; Alexander RT
    Am J Physiol Renal Physiol; 2012 Apr; 302(8):F943-56. PubMed ID: 21937605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base.
    Chen G; Yang Y; Fröhlich O; Klein JD; Sands JM
    Physiol Genomics; 2010 May; 41(3):203-11. PubMed ID: 20197420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aquaporins: The renal water channels.
    Agarwal SK; Gupta A
    Indian J Nephrol; 2008 Jul; 18(3):95-100. PubMed ID: 20142913
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiology and pathophysiology of the calcium-sensing receptor in the kidney.
    Riccardi D; Brown EM
    Am J Physiol Renal Physiol; 2010 Mar; 298(3):F485-99. PubMed ID: 19923405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel regulatory aspects of the extracellular Ca2+-sensing receptor, CaR.
    Riccardi D; Finney BA; Wilkinson WJ; Kemp PJ
    Pflugers Arch; 2009 Oct; 458(6):1007-22. PubMed ID: 19484257
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The calcium-sensing receptor promotes urinary acidification to prevent nephrolithiasis.
    Renkema KY; Velic A; Dijkman HB; Verkaart S; van der Kemp AW; Nowik M; Timmermans K; Doucet A; Wagner CA; Bindels RJ; Hoenderop JG
    J Am Soc Nephrol; 2009 Aug; 20(8):1705-13. PubMed ID: 19470676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of calcium-sensing receptor activation in models of autosomal recessive or dominant polycystic kidney disease.
    Wang X; Harris PC; Somlo S; Batlle D; Torres VE
    Nephrol Dial Transplant; 2009 Feb; 24(2):526-34. PubMed ID: 18826972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption.
    Boone M; Deen PM
    Pflugers Arch; 2008 Sep; 456(6):1005-24. PubMed ID: 18431594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium-sensing receptor attenuates AVP-induced aquaporin-2 expression via a calmodulin-dependent mechanism.
    Bustamante M; Hasler U; Leroy V; de Seigneux S; Dimitrov M; Mordasini D; Rousselot M; Martin PY; Féraille E
    J Am Soc Nephrol; 2008 Jan; 19(1):109-16. PubMed ID: 18032798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The SLC14 gene family of urea transporters.
    Shayakul C; Hediger MA
    Pflugers Arch; 2004 Feb; 447(5):603-9. PubMed ID: 12856182
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats.
    Sands JM; Flores FX; Kato A; Baum MA; Brown EM; Ward DT; Hebert SC; Harris HW
    Am J Physiol; 1998 May; 274(5):F978-85. PubMed ID: 9612337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide inhibits superoxide-stimulated urea permeability in the rat inner medullary collecting duct.
    Zimpelmann J; Li N; Burns KD
    Am J Physiol Renal Physiol; 2003 Dec; 285(6):F1160-7. PubMed ID: 12965888
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments.
    Sands JM; Nonoguchi H; Knepper MA
    Am J Physiol; 1987 Nov; 253(5 Pt 2):F823-32. PubMed ID: 3688238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Long-term regulation of inner medullary collecting duct urea transport in rat.
    Kato A; Naruse M; Knepper MA; Sands JM
    J Am Soc Nephrol; 1998 May; 9(5):737-45. PubMed ID: 9596070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of urea transporter proteins in kidney and liver.
    Sands JM
    Mt Sinai J Med; 2000 Mar; 67(2):112-9. PubMed ID: 10747366
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles.
    Ward DT; Hammond TG; Harris HW
    Annu Rev Physiol; 1999; 61():683-97. PubMed ID: 10099706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.