BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9612385)

  • 1. Modeling cerebral autoregulation and CO2 reactivity in patients with severe head injury.
    Lodi CA; Ter Minassian A; Beydon L; Ursino M
    Am J Physiol; 1998 May; 274(5):H1729-41. PubMed ID: 9612385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model.
    Ursino M; Lodi CA
    Am J Physiol; 1998 May; 274(5):H1715-28. PubMed ID: 9612384
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of airway pressure changes on intracranial pressure (ICP) and the blood flow velocity in the middle cerebral artery (VMCA).
    Ludwig HC; Klingler M; Timmermann A; Weyland W; Mursch K; Reparon C; Markakis E
    Anasthesiol Intensivmed Notfallmed Schmerzther; 2000 Mar; 35(3):141-5. PubMed ID: 10768051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial pressure dynamics in patients with acute brain damage.
    Ursino M; Lodi CA; Rossi S; Stocchetti N
    J Appl Physiol (1985); 1997 Apr; 82(4):1270-82. PubMed ID: 9104865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of the main factors affecting ICP dynamics by mathematical analysis of PVI tests.
    Ursino M; Lodi CA; Rossi S; Stocchetti N
    Acta Neurochir Suppl; 1998; 71():306-9. PubMed ID: 9779215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic effect of cerebral vasospasm in humans: a modeling study.
    Lodi CA; Ursino M
    Ann Biomed Eng; 1999; 27(2):257-73. PubMed ID: 10199702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic-mathematical modeling of intracranial pressure (ICP) profiles over a single heart cycle. The fundament of the ICP curve form.
    Domogo AA; Reinstrup P; Ottesen JT
    J Theor Biol; 2023 May; 564():111451. PubMed ID: 36907263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study.
    Giulioni M; Ursino M
    Neurosurgery; 1996 Nov; 39(5):1005-14; discussion 1014-5. PubMed ID: 8905758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics.
    Ursino M; Lodi CA
    J Appl Physiol (1985); 1997 Apr; 82(4):1256-69. PubMed ID: 9104864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cerebrovascular tone rather than intracranial pressure determines the effective downstream pressure of the cerebral circulation in the absence of intracranial hypertension.
    Weyland A; Buhre W; Grund S; Ludwig H; Kazmaier S; Weyland W; Sonntag H
    J Neurosurg Anesthesiol; 2000 Jul; 12(3):210-6. PubMed ID: 10905568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure autoregulation monitoring and cerebral perfusion pressure target recommendation in patients with severe traumatic brain injury based on minute-by-minute monitoring data.
    Depreitere B; Güiza F; Van den Berghe G; Schuhmann MU; Maier G; Piper I; Meyfroidt G
    J Neurosurg; 2014 Jun; 120(6):1451-7. PubMed ID: 24745709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the Valsalva maneuver on intracranial hypertension.
    Matta B; Strebel S; Lam A
    J Neurosurg Anesthesiol; 1994 Oct; 6(4):280-3. PubMed ID: 8000203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cerebral hemodynamics during arterial and CO(2) pressure changes: in vivo prediction by a mathematical model.
    Ursino M; Ter Minassian A; Lodi CA; Beydon L
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2439-55. PubMed ID: 11045982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic autoregulatory response after severe head injury.
    Hlatky R; Furuya Y; Valadka AB; Gonzalez J; Chacko A; Mizutani Y; Contant CF; Robertson CS
    J Neurosurg; 2002 Nov; 97(5):1054-61. PubMed ID: 12450026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model of cerebrovascular reactivity including the circle of willis and cortical anastomoses.
    Ursino M; Giannessi M
    Ann Biomed Eng; 2010 Mar; 38(3):955-74. PubMed ID: 20094916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of stable xenon inhalation on intracranial pressure during measurement of cerebral blood flow in head injury.
    Plougmann J; Astrup J; Pedersen J; Gyldensted C
    J Neurosurg; 1994 Dec; 81(6):822-8. PubMed ID: 7965111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reproduction of ICP Waveform Changes in a Mathematical Model of the Cerebrospinal Circulatory System.
    Connolly M; He X; Gonzalez N; Hu X
    Acta Neurochir Suppl; 2016; 122():313-6. PubMed ID: 27165928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebrovascular carbon dioxide reactivity assessed by intracranial pressure dynamics in severely head injured patients.
    Yoshihara M; Bandoh K; Marmarou A
    J Neurosurg; 1995 Mar; 82(3):386-93. PubMed ID: 7861215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.