BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 9612388)

  • 1. R-R variability detects increases in vagal modulation with phenylephrine infusion.
    Bloomfield DM; Zweibel S; Bigger JT; Steinman RC
    Am J Physiol; 1998 May; 274(5):H1761-6. PubMed ID: 9612388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of graded increases in parasympathetic tone on heart rate variability.
    Goldberger JJ; Kim YH; Ahmed MW; Kadish AH
    J Cardiovasc Electrophysiol; 1996 Jul; 7(7):594-602. PubMed ID: 8807405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of heart rate variability from parasympathetic tone.
    Goldberger JJ; Ahmed MW; Parker MA; Kadish AH
    Am J Physiol; 1994 May; 266(5 Pt 2):H2152-7. PubMed ID: 8203614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac parasympathetic outflow during dynamic exercise in humans estimated from power spectral analysis of P-P interval variability.
    Takahashi M; Nakamoto T; Matsukawa K; Ishii K; Watanabe T; Sekikawa K; Hamada H
    Exp Physiol; 2016 Mar; 101(3):397-409. PubMed ID: 26690240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting preganglionic and postganglionic effects of phenylephrine on parasympathetic control of heart rate.
    Pardini BJ; Lund DD; Schmid PG
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H118-22. PubMed ID: 1992788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine enhances modulation of parasympathetic nerve activity in humans: quantification using power spectral analysis.
    Hibino G; Moritani T; Kawada T; Fushiki T
    J Nutr; 1997 Jul; 127(7):1422-7. PubMed ID: 9202101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sympathovagal balance: how should we measure it?
    Goldberger JJ
    Am J Physiol; 1999 Apr; 276(4):H1273-80. PubMed ID: 10199852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arterial baroreflex modulation of heart rate in patients early after heart transplantation: lack of parasympathetic reinnervation.
    Raczak G; La Rovere MT; Mortara A; Assandri J; Prpa A; Pinna GD; Maestri R; D'Armini AM; Viganó M; Cobelli F
    J Heart Lung Transplant; 1999 May; 18(5):399-406. PubMed ID: 10363682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous baroreflex measurement in the assessment of cardiac vagal control.
    Wang YP; Cheng YJ; Huang CL
    Clin Auton Res; 2004 Jun; 14(3):189-93. PubMed ID: 15241648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in sympathetic and parasympathetic cardiac activation during mental load: an assessment by spectral analysis of heart rate variability.
    Langewitz W; Rüddel H; Schächinger H; Lepper W; Mulder LJ; Veldman JH; van Roon A
    Homeost Health Dis; 1991; 33(1-2):23-33. PubMed ID: 1817688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heart rate dynamics during accentuated sympathovagal interaction.
    Tulppo MP; Mäkikallio TH; Seppänen T; Airaksinen JK; Huikuri HV
    Am J Physiol; 1998 Mar; 274(3):H810-6. PubMed ID: 9530192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-dose atropine amplifies cardiac vagal modulation and increases dynamic baroreflex function in humans.
    Cho SK; Hwang GS; Kim YK; Huh IY; Hahm KD; Han SM
    Auton Neurosci; 2005 Mar; 118(1-2):108-15. PubMed ID: 15795184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of sham feeding on neurocardiac regulation in healthy human volunteers.
    Kamath MV; Spaziani R; Ullal S; Tougas G; Guzman JC; Morillo C; Capogna J; Al-Bayati M; Armstrong D
    Can J Gastroenterol; 2007 Nov; 21(11):721-6. PubMed ID: 18026575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The high frequency component of heart rate variability reflects cardiac parasympathetic modulation rather than parasympathetic 'tone'.
    Hedman AE; Hartikainen JE; Tahvanainen KU; Hakumäki MO
    Acta Physiol Scand; 1995 Nov; 155(3):267-73. PubMed ID: 8619324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cardiac vagal activity following three intensities of exercise in humans.
    Gladwell VF; Sandercock GR; Birch SL
    Clin Physiol Funct Imaging; 2010 Jan; 30(1):17-22. PubMed ID: 19744086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of opposing reflex stimuli and heart rate variability to examine the effects of lipophilic and hydrophilic beta-blockers on human cardiac vagal control.
    Vaile JC; Fletcher J; Al-Ani M; Ross HF; Littler WA; Coote JH; Townend JN
    Clin Sci (Lond); 1999 Nov; 97(5):585-93; discussion 609-10. PubMed ID: 10545309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased vagal cardiac nerve traffic prolongs ventricular refractoriness in patients undergoing electrophysiology testing.
    Ellenbogen KA; Smith ML; Eckberg DL
    Am J Cardiol; 1990 Jun; 65(20):1345-50. PubMed ID: 2343822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sympathetic nervous system representation in time and frequency domain indices of heart rate variability.
    Polanczyk CA; Rohde LE; Moraes RS; Ferlin EL; Leite C; Ribeiro JP
    Eur J Appl Physiol Occup Physiol; 1998 Dec; 79(1):69-73. PubMed ID: 10052663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological modulation of vagal cardiac control measured by heart rate power spectrum: a possible bioequivalent probe.
    Alcalay M; Izraeli S; Wallach-Kapon R; Tochner Z; Benjamini Y; Akselrod S
    Neurosci Biobehav Rev; 1991; 15(1):51-5. PubMed ID: 2052198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of R-R, P wave-to-R wave, and R wave-to-T wave intervals.
    Forester J; Bo H; Sleigh JW; Henderson JD
    Am J Physiol; 1997 Dec; 273(6):H2857-60. PubMed ID: 9435624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.