BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 9612664)

  • 1. Permeability of the developing and mature blood-brain barriers to theophylline in rats.
    Habgood MD; Knott GW; Dziegielewska KM; Saunders NR
    Clin Exp Pharmacol Physiol; 1998 May; 25(5):361-8. PubMed ID: 9612664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nature of increased blood-cerebrospinal fluid barrier exchange during CO2 inhalation in newborn and adult rats.
    Habgood MD
    Exp Physiol; 1995 Jan; 80(1):117-28. PubMed ID: 7734131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Permeability and route of entry for lipid-insoluble molecules across brain barriers in developing Monodelphis domestica.
    Ek CJ; Habgood MD; Dziegielewska KM; Potter A; Saunders NR
    J Physiol; 2001 Nov; 536(Pt 3):841-53. PubMed ID: 11691876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration.
    Liu X; Smith BJ; Chen C; Callegari E; Becker SL; Chen X; Cianfrogna J; Doran AC; Doran SD; Gibbs JP; Hosea N; Liu J; Nelson FR; Szewc MA; Van Deusen J
    Drug Metab Dispos; 2006 Sep; 34(9):1443-7. PubMed ID: 16760229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theophylline blood-brain barrier transfer kinetics in dogs.
    Veng-Pedersen P; Brashear RE; Karol MD
    J Pharm Sci; 1983 Aug; 72(8):951-3. PubMed ID: 6620157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship of cerebrospinal fluid and plasma theophylline concentrations in children and adolescents taking theophylline.
    Auritt WA; McGeady SJ; Mansmann HC
    J Allergy Clin Immunol; 1985 Jun; 75(6):731-5. PubMed ID: 4008802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence of pulmonary tropism of bamifylline and its main active metabolite.
    Schiantarelli P; Acerbi D; Botta GC; Bonati L; Capelli P; Rondelli I
    Arzneimittelforschung; 1989 Feb; 39(2):215-9. PubMed ID: 2730690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood-brain transfer of glucose and glucose analogs in newborn rats.
    Fuglsang A; Lomholt M; Gjedde A
    J Neurochem; 1986 May; 46(5):1417-28. PubMed ID: 3958714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blood-CSF barrier function in the rat embryo.
    Johansson PA; Dziegielewska KM; Ek CJ; Habgood MD; Liddelow SA; Potter AM; Stolp HB; Saunders NR
    Eur J Neurosci; 2006 Jul; 24(1):65-76. PubMed ID: 16800861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic analysis of [36Cl]-, [22Na]- and [3H]mannitol uptake into the in vivo choroid plexus-cerebrospinal fluid brain system: ontogeny of the blood brain and blood-CSF barriers.
    Smith QR; Woodbury DM; Johanson CE
    Brain Res; 1982 Feb; 255(2):181-98. PubMed ID: 6799152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of hypercapnia and/or hypoxemia and metabolic acidosis on theophylline kinetics in the conscious rabbit.
    Letarte L; du Souich P
    Am Rev Respir Dis; 1984 May; 129(5):762-6. PubMed ID: 6721273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain iron homeostasis.
    Moos T
    Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Barrier mechanisms in the brain, II. Immature brain.
    Saunders NR; Habgood MD; Dziegielewska KM
    Clin Exp Pharmacol Physiol; 1999 Feb; 26(2):85-91. PubMed ID: 10065326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Species-specific transfer of plasma albumin from blood into different cerebrospinal fluid compartments in the fetal sheep.
    Dziegielewska KM; Habgood MD; Møllgård K; Stagaard M; Saunders NR
    J Physiol; 1991 Aug; 439():215-37. PubMed ID: 1895237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A developmentally regulated blood-cerebrospinal fluid transfer mechanism for albumin in immature rats.
    Habgood MD; Sedgwick JE; Dziegielewska KM; Saunders NR
    J Physiol; 1992 Oct; 456():181-92. PubMed ID: 1293278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative investigation of the brain-to-cerebrospinal fluid unbound drug concentration ratio under steady-state conditions in rats using a pharmacokinetic model and scaling factors for active efflux transporters.
    Kodaira H; Kusuhara H; Fuse E; Ushiki J; Sugiyama Y
    Drug Metab Dispos; 2014 Jun; 42(6):983-9. PubMed ID: 24644297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of P-glycoprotein-mediated efflux on cerebrospinal fluid concentrations in rhesus monkeys.
    Tang C; Kuo Y; Pudvah NT; Ellis JD; Michener MS; Egbertson M; Graham SL; Cook JJ; Hochman JH; Prueksaritanont T
    Biochem Pharmacol; 2009 Sep; 78(6):642-7. PubMed ID: 19481060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distribution of enprofylline and theophylline between plasma and cerebrospinal fluid.
    Laursen LC; Borgå O; Krohn L; Weeke B
    Ther Drug Monit; 1989; 11(2):162-4. PubMed ID: 2718221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choroid plexus epithelial expression of MDR1 P glycoprotein and multidrug resistance-associated protein contribute to the blood-cerebrospinal-fluid drug-permeability barrier.
    Rao VV; Dahlheimer JL; Bardgett ME; Snyder AZ; Finch RA; Sartorelli AC; Piwnica-Worms D
    Proc Natl Acad Sci U S A; 1999 Mar; 96(7):3900-5. PubMed ID: 10097135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea.
    Parandoosh Z; Johanson CE
    Am J Physiol; 1982 Sep; 243(3):R400-7. PubMed ID: 7114296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.