These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 9612818)

  • 21. [Inversion polymorphism of the malaria mosquito Anopheles messeae. IX. Cannibalism in larvae as a selection factor].
    Gordeev MI; Troshkov NIu
    Genetika; 1990 Sep; 26(9):1597-603. PubMed ID: 2079206
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Toxicity of Bacillus thuringienses var. israelensis for larvae of Aedes aegypti and Anopheles stephensi].
    de Barjac H
    C R Acad Hebd Seances Acad Sci D; 1978 Apr; 286(15):1175-8. PubMed ID: 96979
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Swath width determination for Beecomist-applied Bacillus thuringiensis (H-14) against Anopheles quadrimaculatus larvae in rice fields.
    Sandoski CA; Yearian WC; Meisch MV
    J Am Mosq Control Assoc; 1986 Dec; 2(4):461-8. PubMed ID: 3507523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Septicaemia of chironomid larvae (Diptera: Chironomidae) promoted by Bacillus cereus and B. thuringiensis].
    Khodyrev VP
    Izv Akad Nauk Ser Biol; 2012; (4):399-403. PubMed ID: 22988756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic identification of Bacillus thuringiensis subsp. israelensis toxin Cry4Ba binding proteins in midgut membranes from Aedes (Stegomyia) aegypti Linnaeus (Diptera, Culicidae) larvae.
    Bayyareddy K; Andacht TM; Abdullah MA; Adang MJ
    Insect Biochem Mol Biol; 2009 Apr; 39(4):279-86. PubMed ID: 19272330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laboratory evaluation of Bacillus thuringiensis (Vectobac WDG) against mosquito larvae, Culex pipiens and Culiseta longiareolata.
    Boudjelida H; Aïssaoui L; Bouaziz A; Smagghe G; Soltani N
    Commun Agric Appl Biol Sci; 2008; 73(3):603-9. PubMed ID: 19226801
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of various control agents against mosquito larvae in rice paddies in Taiwan.
    Teng HJ; Lu LC; Wu YL; Fang JG
    J Vector Ecol; 2005 Jun; 30(1):126-32. PubMed ID: 16007966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ice granules containing endotoxins of microbial agents for the control of mosquito larvae--a new application technique.
    Becker N
    J Am Mosq Control Assoc; 2003 Mar; 19(1):63-6. PubMed ID: 12674537
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Cytogenetic and phenotypic variation in central and peripheral populations of the malaria mosquito, Anopheles messeae Fall. (Diptera, Culicidae)].
    Gordeev MI; Sibataev AK
    Genetika; 1996 Sep; 32(9):1199-205. PubMed ID: 9026461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of Bacillus thuringiensis israelensis on Anopheles arabiensis.
    Futami K; Kongere JO; Mwania MS; Lutiali PA; Njenga SM; Minakawa N
    J Am Mosq Control Assoc; 2011 Mar; 27(1):81-3. PubMed ID: 21476453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Genetic determination of succinate dehydrogenase activity in Anopheles messeae (diptera, culicidae) larvae].
    Perevozkin VP; Kurovskiĭ AV
    Genetika; 2009 Oct; 45(10):1319-23. PubMed ID: 19947542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combination of Mesocyclops thermocyclopoides and Bacillus thuringiensis var. israelensis: a better approach for the control of Aedes aegypti larvae in water containers.
    Chansang UR; Bhumiratana A; Kittayapong P
    J Vector Ecol; 2004 Dec; 29(2):218-26. PubMed ID: 15707281
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Comparison of mosquito larvicidal efficacy between microbial encapsulated BTI (EBTI) and standard BTI (SBTI)].
    Zhang ZH; Ratanatham S; Zomer E; Spielman A; Ye BH; Lu ZG; Zhang YJ; Shi ZM
    Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi; 1992; 10(3):211-4. PubMed ID: 1307279
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Kin selection and developmental rate of malarial mosquitoes with different karyotypes].
    Gordeev MI; Perevozkin VP
    Genetika; 1997 Oct; 33(10):1367-73. PubMed ID: 9445801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laboratory and field evaluation of Teknar HP-D, a biolarvicidal formulation of Bacillus thuringiensis ssp. israelensis, against mosquito vectors.
    Gunasekaran K; Doss PS; Vaidyanathan K
    Acta Trop; 2004 Oct; 92(2):109-18. PubMed ID: 15350862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Laboratory trials with Bacillus thuringiensis serotype H-14 in controlling mosquito larvae.
    Bekheit SS
    J Egypt Soc Parasitol; 1984 Jun; 14(1):71-6. PubMed ID: 6145746
    [No Abstract]   [Full Text] [Related]  

  • 37. [A comparison of some malarial mosquito species in their reaction to bacterial insecticides].
    Rasnitsyn SP; Voĭtsik AA; Iasiukevich VV
    Med Parazitol (Mosk); 1991; (4):6-9. PubMed ID: 1795691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Inversion polymorphism of the malaria mosquito Anopheles messeae. VIII. Distribution of larvae in biotopes under conditions of co-habitation with Anopheles beklemishevi].
    Gordeev MI; Stegniĭ VN
    Genetika; 1989 Feb; 25(2):283-91. PubMed ID: 2737465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Occurrence and diversity of mosquitocidal strains of Bacillus thuringiensis.
    Balaraman K
    J Vector Borne Dis; 2005 Sep; 42(3):81-6. PubMed ID: 16294805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Transgenic bioinsecticides inimical to parasites, but imical to environment].
    Kucińska J; Lonc E; Rydzanicz K
    Wiad Parazytol; 2003; 49(1):11-20. PubMed ID: 16889013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.