These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
514 related articles for article (PubMed ID: 9613807)
1. Erosion of biodegradable block copolymers made of poly(D,L-lactic acid) and poly(ethylene glycol). von Burkersroda F; Gref R; Göpferich A Biomaterials; 1997 Dec; 18(24):1599-607. PubMed ID: 9613807 [TBL] [Abstract][Full Text] [Related]
2. The effect of poly(ethylene glycol)-poly(D,L-lactic acid) diblock copolymers on peptide acylation. Lucke A; Fustella E; Tessmar J; Gazzaniga A; Göpferich A J Control Release; 2002 Apr; 80(1-3):157-68. PubMed ID: 11943395 [TBL] [Abstract][Full Text] [Related]
3. Biodegradable poly(D,L-lactic acid)-poly(ethylene glycol)-monomethyl ether diblock copolymers: structures and surface properties relevant to their use as biomaterials. Lucke A; Tessmar J; Schnell E; Schmeer G; Göpferich A Biomaterials; 2000 Dec; 21(23):2361-70. PubMed ID: 11055283 [TBL] [Abstract][Full Text] [Related]
4. Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. Kranz H; Ubrich N; Maincent P; Bodmeier R J Pharm Sci; 2000 Dec; 89(12):1558-66. PubMed ID: 11042603 [TBL] [Abstract][Full Text] [Related]
5. Synthesis and characterization of poly(ethylene glycol)-poly(D,L-lactide-co-glycolide) poly(ethylene glycol) tri-block co-polymers modified with collagen: a model surface suitable for cell interaction. Porjazoska A; Yilmaz OK; Baysal K; Cvetkovska M; Sirvanci S; Ercan F; Baysal BM J Biomater Sci Polym Ed; 2006; 17(3):323-40. PubMed ID: 16689018 [TBL] [Abstract][Full Text] [Related]
6. Preparation and evaluation of biodegradable films containing the potent osteogenic compound BFB0261 for localized delivery. Umeki N; Sato T; Harada M; Takeda J; Saito S; Iwao Y; Itai S Int J Pharm; 2011 Feb; 404(1-2):10-8. PubMed ID: 21047548 [TBL] [Abstract][Full Text] [Related]
7. Microporous structure and drug release kinetics of polymeric nanoparticles. Sant S; Thommes M; Hildgen P Langmuir; 2008 Jan; 24(1):280-7. PubMed ID: 18052222 [TBL] [Abstract][Full Text] [Related]
8. Lysozyme release and polymer erosion behavior of injectable implants prepared from PLGA-PEG block copolymers and PLGA/PLGA-PEG blends. Vesna Milacic VM; Schwendeman SP Pharm Res; 2014 Feb; 31(2):436-48. PubMed ID: 23959854 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility testing of ABA triblock copolymers consisting of poly(L-lactic-co-glycolic acid) A blocks attached to a central poly(ethylene oxide) B block under in vitro conditions using different L929 mouse fibroblasts cell culture models. Zange R; Li Y; Kissel T J Control Release; 1998 Dec; 56(1-3):249-58. PubMed ID: 9801448 [TBL] [Abstract][Full Text] [Related]
10. Erosion of composite polymer matrices. Göpferich A Biomaterials; 1997 Mar; 18(5):397-403. PubMed ID: 9061180 [TBL] [Abstract][Full Text] [Related]
11. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface. Kim HC; Lee H; Khetan J; Won YY Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595 [TBL] [Abstract][Full Text] [Related]
12. Micellization phenomena of amphiphilic block copolymers based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide). Zhang J; Wang LQ; Wang H; Tu K Biomacromolecules; 2006 Sep; 7(9):2492-500. PubMed ID: 16961309 [TBL] [Abstract][Full Text] [Related]
13. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396 [TBL] [Abstract][Full Text] [Related]
14. Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. Penco M; Marcioni S; Ferruti P; D' Antone S; Deghenghi R Biomaterials; 1996 Aug; 17(16):1583-90. PubMed ID: 8842362 [TBL] [Abstract][Full Text] [Related]
15. Erythropoietin loaded microspheres prepared from biodegradable LPLG-PEO-LPLG triblock copolymers: protein stabilization and in-vitro release properties. Morlock M; Kissel T; Li YX; Koll H; Winter G J Control Release; 1998 Dec; 56(1-3):105-15. PubMed ID: 9801434 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of poly(lactide-co-glycolide) nanospheres by biodegradable poly(lactide)-poly(ethylene glycol) copolymers. Stolnik S; Dunn SE; Garnett MC; Davies MC; Coombes AG; Taylor DC; Irving MP; Purkiss SC; Tadros TF; Davis SS Pharm Res; 1994 Dec; 11(12):1800-8. PubMed ID: 7899246 [TBL] [Abstract][Full Text] [Related]
17. Why degradable polymers undergo surface erosion or bulk erosion. von Burkersroda F; Schedl L; Göpferich A Biomaterials; 2002 Nov; 23(21):4221-31. PubMed ID: 12194525 [TBL] [Abstract][Full Text] [Related]
18. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol. Yeh MK J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421 [TBL] [Abstract][Full Text] [Related]
19. Controlled delivery of a hydrophilic drug from a biodegradable microsphere system by supercritical anti-solvent precipitation technique. Lee S; Kim MS; Kim JS; Park HJ; Woo JS; Lee BC; Hwang SJ J Microencapsul; 2006 Nov; 23(7):741-9. PubMed ID: 17123918 [TBL] [Abstract][Full Text] [Related]
20. 5-Fluorouracil-loaded PLA/PLGA PEG-PPG-PEG polymeric nanoparticles: formulation, in vitro characterization and cell culture studies. Ocal H; Arica-Yegin B; Vural I; Goracinova K; Caliş S Drug Dev Ind Pharm; 2014 Apr; 40(4):560-7. PubMed ID: 23596973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]