These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 9614187)
1. Calcium-dependent clustering of inositol 1,4,5-trisphosphate receptors. Wilson BS; Pfeiffer JR; Smith AJ; Oliver JM; Oberdorf JA; Wojcikiewicz RJ Mol Biol Cell; 1998 Jun; 9(6):1465-78. PubMed ID: 9614187 [TBL] [Abstract][Full Text] [Related]
2. Differences among type I, II, and III inositol-1,4,5-trisphosphate receptors in ligand-binding affinity influence the sensitivity of calcium stores to inositol-1,4,5-trisphosphate. Wojcikiewicz RJ; Luo SG Mol Pharmacol; 1998 Apr; 53(4):656-62. PubMed ID: 9547355 [TBL] [Abstract][Full Text] [Related]
3. An examination of the secretion-like coupling model for the activation of the Ca2+ release-activated Ca2+ current I(CRAC) in RBL-1 cells. Bakowski D; Glitsch MD; Parekh AB J Physiol; 2001 Apr; 532(Pt 1):55-71. PubMed ID: 11283225 [TBL] [Abstract][Full Text] [Related]
4. Muscarinic receptor activation down-regulates the type I inositol 1,4,5-trisphosphate receptor by accelerating its degradation. Wojcikiewicz RJ; Furuichi T; Nakade S; Mikoshiba K; Nahorski SR J Biol Chem; 1994 Mar; 269(11):7963-9. PubMed ID: 8132516 [TBL] [Abstract][Full Text] [Related]
5. Distribution of inositol 1,4,5-trisphosphate receptor isoforms, SERCA isoforms and Ca2+ binding proteins in RBL-2H3 rat basophilic leukemia cells. Vanlingen S; Parys JB; Missiaen L; De Smedt H; Wuytack F; Casteels R Cell Calcium; 1997 Dec; 22(6):475-86. PubMed ID: 9502197 [TBL] [Abstract][Full Text] [Related]
6. Chronic muscarinic stimulation of SH-SY5Y neuroblastoma cells suppresses inositol 1,4,5-trisphosphate action. Parallel inhibition of inositol 1,4,5-trisphosphate-induced Ca2+ mobilization and inositol 1,4,5-trisphosphate binding. Wojcikiewicz RJ; Nahorski SR J Biol Chem; 1991 Nov; 266(33):22234-41. PubMed ID: 1657992 [TBL] [Abstract][Full Text] [Related]
7. Regulation by Ca2+ and inositol 1,4,5-trisphosphate (InsP3) of single recombinant type 3 InsP3 receptor channels. Ca2+ activation uniquely distinguishes types 1 and 3 insp3 receptors. Mak DO; McBride S; Foskett JK J Gen Physiol; 2001 May; 117(5):435-46. PubMed ID: 11331354 [TBL] [Abstract][Full Text] [Related]
8. Evidence that zymogen granules are not a physiologically relevant calcium pool. Defining the distribution of inositol 1,4,5-trisphosphate receptors in pancreatic acinar cells. Yule DI; Ernst SA; Ohnishi H; Wojcikiewicz RJ J Biol Chem; 1997 Apr; 272(14):9093-8. PubMed ID: 9083036 [TBL] [Abstract][Full Text] [Related]
9. Two inositol 1,4,5-trisphosphate binding sites in rat basophilic leukemia cells: relationship between receptor occupancy and calcium release. Watras J; Moraru I; Costa DJ; Kindman LA Biochemistry; 1994 Nov; 33(47):14359-67. PubMed ID: 7947846 [TBL] [Abstract][Full Text] [Related]
10. Thapsigargin-sensitive Ca(2+)-ATPases account for Ca2+ uptake to inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive Ca2+ stores in adrenal chromaffin cells. Poulsen JC; Caspersen C; Mathiasen D; East JM; Tunwell RE; Lai FA; Maeda N; Mikoshiba K; Treiman M Biochem J; 1995 May; 307 ( Pt 3)(Pt 3):749-58. PubMed ID: 7741706 [TBL] [Abstract][Full Text] [Related]
11. Role of inositol trisphosphate-sensitive calcium stores in the regulation of adrenocorticotropin secretion by perifused rat anterior pituitary cells. Won JG; Orth DN Endocrinology; 1995 Dec; 136(12):5399-408. PubMed ID: 7588288 [TBL] [Abstract][Full Text] [Related]
12. Fast activation and inactivation of inositol trisphosphate-evoked Ca2+ release in rat cerebellar Purkinje neurones. Khodakhah K; Ogden D J Physiol; 1995 Sep; 487 ( Pt 2)(Pt 2):343-58. PubMed ID: 8558468 [TBL] [Abstract][Full Text] [Related]
13. Type I, II, and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. Wojcikiewicz RJ J Biol Chem; 1995 May; 270(19):11678-83. PubMed ID: 7744807 [TBL] [Abstract][Full Text] [Related]
14. Regulation of inositol trisphosphate receptors by luminal Ca2+ contributes to quantal Ca2+ mobilization. Combettes L; Cheek TR; Taylor CW EMBO J; 1996 May; 15(9):2086-93. PubMed ID: 8641274 [TBL] [Abstract][Full Text] [Related]
15. Intracellular Ca2+ signals induced by ATP and thapsigargin in glioma C6 cells. Calcium pools sensitive to inositol 1,4,5-trisphosphate and thapsigargin. Sabała P; Amler E; Barańska J Neurochem Int; 1997 Jul; 31(1):55-64. PubMed ID: 9185165 [TBL] [Abstract][Full Text] [Related]
16. Novel model of calcium and inositol 1,4,5-trisphosphate regulation of InsP3 receptor channel gating in native endoplasmic reticulum. Foskett JK; Mak DO Biol Res; 2004; 37(4):513-9. PubMed ID: 15709677 [TBL] [Abstract][Full Text] [Related]
18. Control of calcium spiking frequency in pituitary gonadotrophs by a single-pool cytoplasmic oscillator. Stojilkovic SS; Tomic M; Kukuljan M; Catt KJ Mol Pharmacol; 1994 May; 45(5):1013-21. PubMed ID: 8190091 [TBL] [Abstract][Full Text] [Related]
19. Slow kinetics of InsP3-induced Ca2+ release: differences between uni- and bi-directional 45Ca2+ fluxes. Missiaen L; Parys JB; De Smedt H; Lemaire FX; Sienaert I; Bootman MD; Casteels R Cell Calcium; 1995 Aug; 18(2):100-10. PubMed ID: 7585887 [TBL] [Abstract][Full Text] [Related]