BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9614274)

  • 1. New scoring schemes for protein fold recognition based on Voronoi contacts.
    Zimmer R; Wöhler M; Thiele R
    Bioinformatics; 1998; 14(3):295-308. PubMed ID: 9614274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast protein fold recognition via sequence to structure alignment and contact capacity potentials.
    Alexandrov NN; Nussinov R; Zimmer RM
    Pac Symp Biocomput; 1996; ():53-72. PubMed ID: 9390223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences.
    Tan YH; Huang H; Kihara D
    Proteins; 2006 Aug; 64(3):587-600. PubMed ID: 16799934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo structure prediction of globular proteins aided by sequence variation-derived contacts.
    Kosciolek T; Jones DT
    PLoS One; 2014; 9(3):e92197. PubMed ID: 24637808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRalanyzer: a tool for functional analysis of fold-recognition sequence-structure alignments.
    Saini HK; Fischer D
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W499-502. PubMed ID: 17537819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assigning amino acid sequences to 3-dimensional protein folds.
    Fischer D; Rice D; Bowie JU; Eisenberg D
    FASEB J; 1996 Jan; 10(1):126-36. PubMed ID: 8566533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments.
    Yang AS; Honig B
    J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of protein structure by evaluation of sequence-structure fitness. Aligning sequences to contact profiles derived from three-dimensional structures.
    Ouzounis C; Sander C; Scharf M; Schneider R
    J Mol Biol; 1993 Aug; 232(3):805-25. PubMed ID: 8355272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of threading potentials and sequence profiles improves fold recognition.
    Panchenko AR; Marchler-Bauer A; Bryant SH
    J Mol Biol; 2000 Mar; 296(5):1319-31. PubMed ID: 10698636
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DIALIGN: finding local similarities by multiple sequence alignment.
    Morgenstern B; Frech K; Dress A; Werner T
    Bioinformatics; 1998; 14(3):290-4. PubMed ID: 9614273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein fold recognition by sequence threading: tools and assessment techniques.
    Miller RT; Jones DT; Thornton JM
    FASEB J; 1996 Jan; 10(1):171-8. PubMed ID: 8566539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel knowledge-based mean force potential at the profile level.
    Dong Q; Wang X; Lin L
    BMC Bioinformatics; 2006 Jun; 7():324. PubMed ID: 16803615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple sequence threading: an analysis of alignment quality and stability.
    Taylor WR
    J Mol Biol; 1997 Jun; 269(5):902-43. PubMed ID: 9223650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. transAlign: using amino acids to facilitate the multiple alignment of protein-coding DNA sequences.
    Bininda-Emonds OR
    BMC Bioinformatics; 2005 Jun; 6():156. PubMed ID: 15969769
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DIALIGN-T: an improved algorithm for segment-based multiple sequence alignment.
    Subramanian AR; Weyer-Menkhoff J; Kaufmann M; Morgenstern B
    BMC Bioinformatics; 2005 Mar; 6():66. PubMed ID: 15784139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards optimal alignment of protein structure distance matrices.
    Wohlers I; Domingues FS; Klau GW
    Bioinformatics; 2010 Sep; 26(18):2273-80. PubMed ID: 20639543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fold recognition by scoring protein maps using the congruence coefficient.
    Di Lena P; Baldi P
    Bioinformatics; 2021 May; 37(4):506-513. PubMed ID: 32976564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientational potentials extracted from protein structures improve native fold recognition.
    Buchete NV; Straub JE; Thirumalai D
    Protein Sci; 2004 Apr; 13(4):862-74. PubMed ID: 15044723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PASS2: an automated database of protein alignments organised as structural superfamilies.
    Bhaduri A; Pugalenthi G; Sowdhamini R
    BMC Bioinformatics; 2004 Apr; 5():35. PubMed ID: 15059245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.