These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 9614274)

  • 21. Search for folding nuclei in native protein structures.
    Shmygelska A
    Bioinformatics; 2005 Jun; 21 Suppl 1():i394-402. PubMed ID: 15961484
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recognition of analogous and homologous protein folds: analysis of sequence and structure conservation.
    Russell RB; Saqi MA; Sayle RA; Bates PA; Sternberg MJ
    J Mol Biol; 1997 Jun; 269(3):423-39. PubMed ID: 9199410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NIAS-Server: Neighbors Influence of Amino acids and Secondary Structures in Proteins.
    Borguesan B; Inostroza-Ponta M; Dorn M
    J Comput Biol; 2017 Mar; 24(3):255-265. PubMed ID: 27494258
    [TBL] [Abstract][Full Text] [Related]  

  • 25. PR2ALIGN: a stand-alone software program and a web-server for protein sequence alignment using weighted biochemical properties of amino acids.
    Kuznetsov IB; McDuffie M
    BMC Res Notes; 2015 May; 8():187. PubMed ID: 25947299
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Novel knowledge-based mean force potential at atomic level.
    Melo F; Feytmans E
    J Mol Biol; 1997 Mar; 267(1):207-22. PubMed ID: 9096219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A reduced protein model with accurate native-structure identification ability.
    Betancourt MR
    Proteins; 2003 Dec; 53(4):889-907. PubMed ID: 14635131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ab initio prediction of the three-dimensional structure of a de novo designed protein: a double-blind case study.
    Klepeis JL; Wei Y; Hecht MH; Floudas CA
    Proteins; 2005 Feb; 58(3):560-70. PubMed ID: 15609306
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Amino acid alphabet reduction preserves fold information contained in contact interactions in proteins.
    Solis AD
    Proteins; 2015 Dec; 83(12):2198-216. PubMed ID: 26407535
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the design and analysis of protein folding potentials.
    Tobi D; Shafran G; Linial N; Elber R
    Proteins; 2000 Jul; 40(1):71-85. PubMed ID: 10813832
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Profile-based direct kernels for remote homology detection and fold recognition.
    Rangwala H; Karypis G
    Bioinformatics; 2005 Dec; 21(23):4239-47. PubMed ID: 16188929
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Filling-in void and sparse regions in protein sequence space by protein-like artificial sequences enables remarkable enhancement in remote homology detection capability.
    Mudgal R; Sowdhamini R; Chandra N; Srinivasan N; Sandhya S
    J Mol Biol; 2014 Feb; 426(4):962-79. PubMed ID: 24316367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amino acid interaction preferences in helical membrane proteins.
    Jha AN; Vishveshwara S; Banavar JR
    Protein Eng Des Sel; 2011 Aug; 24(8):579-88. PubMed ID: 21666247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model.
    Wang S; Sun S; Li Z; Zhang R; Xu J
    PLoS Comput Biol; 2017 Jan; 13(1):e1005324. PubMed ID: 28056090
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fold prediction of helical proteins using torsion angle dynamics and predicted restraints.
    Zhang C; Hou J; Kim SH
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3581-5. PubMed ID: 11904420
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AutoSCOP: automated prediction of SCOP classifications using unique pattern-class mappings.
    Gewehr JE; Hintermair V; Zimmer R
    Bioinformatics; 2007 May; 23(10):1203-10. PubMed ID: 17379694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Four-body contact potentials derived from two protein datasets to discriminate native structures from decoys.
    Feng Y; Kloczkowski A; Jernigan RL
    Proteins; 2007 Jul; 68(1):57-66. PubMed ID: 17393455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. VoroMQA: Assessment of protein structure quality using interatomic contact areas.
    Olechnovič K; Venclovas Č
    Proteins; 2017 Jun; 85(6):1131-1145. PubMed ID: 28263393
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Native and modeled disulfide bonds in proteins: knowledge-based approaches toward structure prediction of disulfide-rich polypeptides.
    Thangudu RR; Vinayagam A; Pugalenthi G; Manonmani A; Offmann B; Sowdhamini R
    Proteins; 2005 Mar; 58(4):866-79. PubMed ID: 15645448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vorolign--fast structural alignment using Voronoi contacts.
    Birzele F; Gewehr JE; Csaba G; Zimmer R
    Bioinformatics; 2007 Jan; 23(2):e205-11. PubMed ID: 17237093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.