These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 9614491)

  • 21. The role of calsequestrin, triadin, and junctin in conferring cardiac ryanodine receptor responsiveness to luminal calcium.
    Györke I; Hester N; Jones LR; Györke S
    Biophys J; 2004 Apr; 86(4):2121-8. PubMed ID: 15041652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart.
    Singh RB; Chohan PK; Dhalla NS; Netticadan T
    J Mol Cell Cardiol; 2004 Jul; 37(1):101-10. PubMed ID: 15242740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A leakage leads to failure: roles of sarcoplasmic reticulum Ca2+ leak via RyR2 in heart failure progression.
    Duan DD
    Hypertension; 2010 Apr; 55(4):849-51. PubMed ID: 20157050
    [No Abstract]   [Full Text] [Related]  

  • 24. Calsequestrin and the calcium release channel of skeletal and cardiac muscle.
    Beard NA; Laver DR; Dulhunty AF
    Prog Biophys Mol Biol; 2004 May; 85(1):33-69. PubMed ID: 15050380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of long-term treatment of imidapril on mortality, cardiac function, and gene expression in congestive heart failure due to myocardial infarction.
    Ren B; Shao Q; Ganguly PK; Tappia PS; Takeda N; Dhalla NS
    Can J Physiol Pharmacol; 2004 Dec; 82(12):1118-27. PubMed ID: 15644955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ryanodine receptor Ca
    Denniss A; Dulhunty AF; Beard NA
    Int J Biochem Cell Biol; 2018 Aug; 101():49-53. PubMed ID: 29775742
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An Il-lumen-ating look at ryanodine receptor modulation by disruption in triadin and calsequestrin interactions in cardiac myocytes.
    Ramay HR; Fabris F; Noel O; Sarkar A
    J Physiol; 2008 Feb; 586(3):697-9. PubMed ID: 18048447
    [No Abstract]   [Full Text] [Related]  

  • 28. Calsequestrin mediates changes in spontaneous calcium release profiles.
    Tania N; Keener JP
    J Theor Biol; 2010 Aug; 265(3):359-76. PubMed ID: 20648970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of current flow through ryanodine receptors by luminal Ca2+.
    Sitsapesan R; Williams AJ
    J Membr Biol; 1997 Oct; 159(3):179-85. PubMed ID: 9312207
    [No Abstract]   [Full Text] [Related]  

  • 30. Involvement of membrane systems in heart failure due to intracellular calcium overload and deficiency.
    Dhalla NS
    J Mol Cell Cardiol; 1976 Sep; 08(9):661-7. PubMed ID: 972403
    [No Abstract]   [Full Text] [Related]  

  • 31. Sarcoplasmic reticulum Ca2+ leak in heart failure: mere observation or functional relevance?
    George CH
    Cardiovasc Res; 2008 Jan; 77(2):302-14. PubMed ID: 18006486
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiac contractility modulation electrical signals improve myocardial gene expression in patients with heart failure.
    Butter C; Rastogi S; Minden HH; Meyhöfer J; Burkhoff D; Sabbah HN
    J Am Coll Cardiol; 2008 May; 51(18):1784-9. PubMed ID: 18452785
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation and dysregulation of cardiac ryanodine receptor (RyR2) open probability during diastole in health and disease.
    Dulhunty AF; Beard NA; Hanna AD
    J Gen Physiol; 2012 Aug; 140(2):87-92. PubMed ID: 22851673
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of ryanodine receptors by calsequestrin: effect of high luminal Ca2+ and phosphorylation.
    Beard NA; Casarotto MG; Wei L; Varsányi M; Laver DR; Dulhunty AF
    Biophys J; 2005 May; 88(5):3444-54. PubMed ID: 15731387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Altered intracellular Ca2+ handling in heart failure.
    Yano M; Ikeda Y; Matsuzaki M
    J Clin Invest; 2005 Mar; 115(3):556-64. PubMed ID: 15765137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of β-adrenergic-stimulated phosphorylation of CaV1.2 channels on Ser1700 leads to heart failure.
    Yang L; Dai DF; Yuan C; Westenbroek RE; Yu H; West N; de la Iglesia HO; Catterall WA
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):E7976-E7985. PubMed ID: 27864509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alterations of calcium-regulatory proteins in heart failure.
    Hasenfuss G
    Cardiovasc Res; 1998 Feb; 37(2):279-89. PubMed ID: 9614485
    [No Abstract]   [Full Text] [Related]  

  • 39. Letter to the editor: Re-evaluation of heart failure in transgenic mice with impaired SR Ca2+ release.
    Sato Y; Schmidt AG; Kiriazis H; Hoit BD; Kranias EG
    J Mol Cell Cardiol; 2001 Sep; 33(9):1757-9. PubMed ID: 11549354
    [No Abstract]   [Full Text] [Related]  

  • 40. Functional Impact of Ryanodine Receptor Oxidation on Intracellular Calcium Regulation in the Heart.
    Zima AV; Mazurek SR
    Rev Physiol Biochem Pharmacol; 2016; 171():39-62. PubMed ID: 27251471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.