These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 9615534)
1. Failure to predict abundance of saltmarsh mosquitoes Aedes sollicitans and A. taeniorhynchus (Diptera: Culicidae) by using variables of tide and weather. Ailes MC J Med Entomol; 1998 May; 35(3):200-4. PubMed ID: 9615534 [TBL] [Abstract][Full Text] [Related]
2. Density and distribution of Dirofilaria immitis (Nematoda: Filarioidea) third-stage larvae in Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae). Parker BM J Med Entomol; 2000 Sep; 37(5):695-700. PubMed ID: 11004780 [TBL] [Abstract][Full Text] [Related]
3. Characterizing population dynamics of Aedes sollicitans (Diptera: Culicidae) using meteorological data. Shone SM; Curriero FC; Lesser CR; Glass GE J Med Entomol; 2006 Mar; 43(2):393-402. PubMed ID: 16619626 [TBL] [Abstract][Full Text] [Related]
4. Transmission of Venezuelan equine encephalomyelitis virus by Aedes sollicitans and Aedes taeniorhynchus (Diptera: Culicidae). Turell MJ; Ludwig GV; Beaman JR J Med Entomol; 1992 Jan; 29(1):62-5. PubMed ID: 1552530 [TBL] [Abstract][Full Text] [Related]
5. Variation of mosquito (Diptera: Culicidae) relative abundance and Dirofilaria immitis (Nematoda: Filarioidea) vector potential in coastal North Carolina. Parker BM J Med Entomol; 1993 Mar; 30(2):436-42. PubMed ID: 8096249 [TBL] [Abstract][Full Text] [Related]
6. Seasonal Abundance of Aedes Sollicitans and Aedes Taeniorhynchus Related to Temperature, Rainfall and Tidal Levels in Northeastern Florida. Dale P; Qualls WA; Xue RD J Am Mosq Control Assoc; 2023 Sep; 39(3):168-172. PubMed ID: 37796734 [TBL] [Abstract][Full Text] [Related]
7. Malathion resistance in mosquitoes from Charleston and Georgetown counties of coastal South Carolina. Mekuria Y; Williams DC; Hyatt MG; Zack RE; Gwinn TA J Am Mosq Control Assoc; 1994 Mar; 10(1):56-63. PubMed ID: 7912262 [TBL] [Abstract][Full Text] [Related]
8. Identification and analysis of NADPH-cytochrome P450 reductase in Aedes sollicitans (Diptera: Culicidae). Suwanchaichinda C; Sun D; Brattsten LB J Med Entomol; 2014 Sep; 51(5):958-63. PubMed ID: 25276923 [TBL] [Abstract][Full Text] [Related]
9. Incrimination of the mosquito, Aedes taeniorhynchus, as the primary vector of heartworm, Dirofilaria immitis, in coastal Yucatan, Mexico. Manrique-Saide P; Escobedo-Ortegón J; Bolio-González M; Sauri-Arceo C; Dzib-Florez S; Guillermo-May G; Ceh-Pavía E; Lenhart A Med Vet Entomol; 2010 Dec; 24(4):456-60. PubMed ID: 20572932 [TBL] [Abstract][Full Text] [Related]
10. Effect of salt concentration in larval rearing water on susceptibility of Aedes Mosquitoes (Diptera: Culicidae) to eastern equine and Venezuelan equine encephalitis viruses. Turell MJ J Med Entomol; 1998 Sep; 35(5):670-3. PubMed ID: 9775590 [TBL] [Abstract][Full Text] [Related]
11. Dynamic life table model for Aedes aegypti (diptera: Culicidae): simulation results and validation. Focks DA; Haile DG; Daniels E; Mount GA J Med Entomol; 1993 Nov; 30(6):1018-28. PubMed ID: 8271243 [TBL] [Abstract][Full Text] [Related]
12. A generic weather-driven model to predict mosquito population dynamics applied to species of Anopheles, Culex and Aedes genera of southern France. Ezanno P; Aubry-Kientz M; Arnoux S; Cailly P; L'Ambert G; Toty C; Balenghien T; Tran A Prev Vet Med; 2015 Jun; 120(1):39-50. PubMed ID: 25623972 [TBL] [Abstract][Full Text] [Related]
13. The association between meteorological variables and the abundance of Aedes taeniorhynchus in the Florida Keys. Hribar LJ; DeMay DJ; Lund UJ J Vector Ecol; 2010 Dec; 35(2):339-46. PubMed ID: 21175941 [TBL] [Abstract][Full Text] [Related]
14. Development of a novel sticky trap for container-breeding mosquitoes and evaluation of its sampling properties to monitor urban populations of Aedes albopictus. Facchinelli L; Valerio L; Pombi M; Reiter P; Costantini C; Della Torre A Med Vet Entomol; 2007 Jun; 21(2):183-95. PubMed ID: 17550438 [TBL] [Abstract][Full Text] [Related]
15. Composition and adult activity of salt-marsh mosquitoes attracted to 1-octen-3-ol, carbon dioxide, and light in Topsail Island, North Carolina. Rueda LM; Gardner RC J Am Mosq Control Assoc; 2003 Jun; 19(2):166-9. PubMed ID: 12825671 [TBL] [Abstract][Full Text] [Related]
16. Multiple isolations of eastern equine encephalitis and highlands J viruses from mosquitoes (Diptera: Culicidae) during a 1996 epizootic in southeastern Connecticut. Andreadis TG; Anderson JF; Tirrell-Peck SJ J Med Entomol; 1998 May; 35(3):296-302. PubMed ID: 9615549 [TBL] [Abstract][Full Text] [Related]
17. Interactive effects of 1-octen-3-ol and carbon dioxide on mosquito (Diptera: Culicidae) surveillance and control. Kline DL; Wood JR; Cornell JA J Med Entomol; 1991 Mar; 28(2):254-8. PubMed ID: 1905355 [TBL] [Abstract][Full Text] [Related]
18. Determining meteorological drivers of salt marsh mosquito peaks in tropical northern Australia. Jacups SP; Carter J; Kurucz N; McDonnell J; Whelan PI J Vector Ecol; 2015 Dec; 40(2):277-81. PubMed ID: 26611962 [TBL] [Abstract][Full Text] [Related]
19. Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile virus. Turell MJ; O'Guinn ML; Dohm DJ; Jones JW J Med Entomol; 2001 Mar; 38(2):130-4. PubMed ID: 11296813 [TBL] [Abstract][Full Text] [Related]
20. Adult body size and parity in field populations of the mosquitoes Anopheles crucians, Aedes taeniorhynchus and Aedes sollicitans. Nasci RS J Am Mosq Control Assoc; 1987 Dec; 3(4):636-7. PubMed ID: 3504950 [No Abstract] [Full Text] [Related] [Next] [New Search]