These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 9615738)

  • 1. Radiation-induced apoptosis of human prostate cancer cells is independent of mutant p53 overexpression.
    Kyprianou N; Rock S
    Anticancer Res; 1998; 18(2A):897-905. PubMed ID: 9615738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Caspase-1 enhances the apoptotic response of prostate cancer cells to ionizing radiation.
    Winter RN; Rhee JG; Kyprianou N
    Anticancer Res; 2004; 24(3a):1377-86. PubMed ID: 15274298
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1-mediated apoptosis.
    Guo Y; Kyprianou N
    Cancer Res; 1999 Mar; 59(6):1366-71. PubMed ID: 10096572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alpha1-adrenoceptor antagonists radiosensitize prostate cancer cells via apoptosis induction.
    Cuellar DC; Rhee J; Kyprianou N
    Anticancer Res; 2002; 22(3):1673-9. PubMed ID: 12168853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protection of androgen-dependent human prostate cancer cells from oxidative stress-induced DNA damage by overexpression of clusterin and its modulation by androgen.
    Miyake H; Hara I; Gleave ME; Eto H
    Prostate; 2004 Dec; 61(4):318-23. PubMed ID: 15389725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell death in irradiated prostate epithelial cells: role of apoptotic and clonogenic cell kill.
    Bromfield GP; Meng A; Warde P; Bristow RG
    Prostate Cancer Prostatic Dis; 2003; 6(1):73-85. PubMed ID: 12664070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional p53 increases prostate cancer cell survival after exposure to fractionated doses of ionizing radiation.
    Scott SL; Earle JD; Gumerlock PH
    Cancer Res; 2003 Nov; 63(21):7190-6. PubMed ID: 14612513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antisense TRPM-2 oligodeoxynucleotides chemosensitize human androgen-independent PC-3 prostate cancer cells both in vitro and in vivo.
    Miyake H; Chi KN; Gleave ME
    Clin Cancer Res; 2000 May; 6(5):1655-63. PubMed ID: 10815883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exogenous mutant p53 DNA enhanced cisplatin-induced apoptosis in TSGH-8301 human bladder cancer cells.
    Chang FL; Ling YF; Lai MD
    Anticancer Res; 2000; 20(1A):329-36. PubMed ID: 10769676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular clusterin induces G2-M phase arrest and cell death in PC-3 prostate cancer cells1.
    Scaltriti M; Santamaria A; Paciucci R; Bettuzzi S
    Cancer Res; 2004 Sep; 64(17):6174-82. PubMed ID: 15342402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of radiation-induced G2 delay potentiates cell death by apoptosis and/or the induction of giant cells in colorectal tumor cells with disrupted p53 function.
    Bracey TS; Williams AC; Paraskeva C
    Clin Cancer Res; 1997 Aug; 3(8):1371-81. PubMed ID: 9815821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overcoming the radioresistance of prostate cancer cells with a novel Bcl-2 inhibitor.
    An J; Chervin AS; Nie A; Ducoff HS; Huang Z
    Oncogene; 2007 Feb; 26(5):652-61. PubMed ID: 16909121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionizing radiation induces apoptotic cell death in human TcR-gamma/delta+ T and natural killer cells without detectable p53 protein.
    Seki H; Kanegane H; Iwai K; Konno A; Ohta K; Yachie A; Taniguchi N; Miyawaki T
    Eur J Immunol; 1994 Nov; 24(11):2914-7. PubMed ID: 7957582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant adenovirus vector expressing wild-type p53 is a potent inhibitor of prostate cancer cell proliferation.
    Srivastava S; Katayose D; Tong YA; Craig CR; McLeod DG; Moul JW; Cowan KH; Seth P
    Urology; 1995 Dec; 46(6):843-8. PubMed ID: 7502427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bcl-2 antagonizes the combined apoptotic effect of transforming growth factor-beta and dihydrotestosterone in prostate cancer cells.
    Bruckheimer EM; Kyprianou N
    Prostate; 2002 Oct; 53(2):133-42. PubMed ID: 12242728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cell cycle regulation after exposure to ionizing radiation].
    Teyssier F; Bay JO; Dionet C; Verrelle P
    Bull Cancer; 1999 Apr; 86(4):345-57. PubMed ID: 10341340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth inhibition and activation of apoptotic gene expression by human chorionic gonadotropin in human breast epithelial cells.
    Srivastava P; Russo J; Mgbonyebi OP; Russo IH
    Anticancer Res; 1998; 18(6A):4003-10. PubMed ID: 9891438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ionizing radiation enhances the therapeutic potential of TRAIL in prostate cancer in vitro and in vivo: Intracellular mechanisms.
    Shankar S; Singh TR; Srivastava RK
    Prostate; 2004 Sep; 61(1):35-49. PubMed ID: 15287092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bcl-2 and Bcl-x(L) differentially protect human prostate cancer cells from induction of apoptosis by melanoma differentiation associated gene-7, mda-7/IL-24.
    Lebedeva IV; Sarkar D; Su ZZ; Kitada S; Dent P; Stein CA; Reed JC; Fisher PB
    Oncogene; 2003 Nov; 22(54):8758-73. PubMed ID: 14647471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defective DNA strand break repair after DNA damage in prostate cancer cells: implications for genetic instability and prostate cancer progression.
    Fan R; Kumaravel TS; Jalali F; Marrano P; Squire JA; Bristow RG
    Cancer Res; 2004 Dec; 64(23):8526-33. PubMed ID: 15574758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.