These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 9616762)

  • 1. Sodium channel regulation of skeletal muscle membrane excitability.
    Ruff RL
    Ann N Y Acad Sci; 1997 Dec; 835():64-76. PubMed ID: 9616762
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of temperature on slow and fast inactivation of rat skeletal muscle Na(+) channels.
    Ruff RL
    Am J Physiol; 1999 Nov; 277(5):C937-47. PubMed ID: 10564086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na channel density in extrajunctional sarcolemma of fast and slow twitch mouse skeletal muscle fibres: functional implications and plasticity after fast motoneuron transplantation on to a slow muscle.
    Milton RL; Behforouz MA
    J Muscle Res Cell Motil; 1995 Aug; 16(4):430-9. PubMed ID: 7499483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fiber type conversion alters inactivation of voltage-dependent sodium currents in murine C2C12 skeletal muscle cells.
    Zebedin E; Sandtner W; Galler S; Szendroedi J; Just H; Todt H; Hilber K
    Am J Physiol Cell Physiol; 2004 Aug; 287(2):C270-80. PubMed ID: 15044148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle disuse induces fibre type-dependent enhancement of Na(+) channel expression.
    Desaphy JF; Pierno S; Léoty C; George AL; De Luca A; Camerino DC
    Brain; 2001 Jun; 124(Pt 6):1100-13. PubMed ID: 11353726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of excitability parameters and sodium channel behavior of fast- and slow-twitch rat skeletal muscles for the study of the effects of hindlimb suspension, a model of hypogravity.
    Desaphy JF; Pierno S; Liantonio A; De Luca A; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P77-8. PubMed ID: 11542373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in sodium voltage-gated channel properties according to myosin heavy chain isoform expression in single muscle fibres.
    Rannou F; Droguet M; Giroux-Metges MA; Pennec Y; Gioux M; Pennec JP
    J Physiol; 2009 Nov; 587(Pt 21):5249-58. PubMed ID: 19752118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative analysis of the effects of exercise training on contractile responses in fast- and slow-twitch rat skeletal muscles.
    Joumaa WH; Léoty C
    J Comp Physiol B; 2002 May; 172(4):329-38. PubMed ID: 12037595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gating behaviour of sodium currents in adult mouse muscle recorded with an improved two-electrode voltage clamp.
    Fu Y; Struyk A; Markin V; Cannon S
    J Physiol; 2011 Feb; 589(Pt 3):525-46. PubMed ID: 21135045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential targets for skeletal muscle impairment by hypogravity: basic characterization of resting ionic conductances and mechanical threshold of rat fast- and slow-twitch muscle fibers.
    De Luca A; Liantonio A; Pierno S; Desaphy JF; Leoty C; Conte Camerino D
    J Gravit Physiol; 1998 Jul; 5(1):P75-6. PubMed ID: 11542372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation pulse characteristics and electrode configuration determine site of excitation in isolated mammalian skeletal muscle: implications for fatigue.
    Cairns SP; Chin ER; Renaud JM
    J Appl Physiol (1985); 2007 Jul; 103(1):359-68. PubMed ID: 17412789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of aquaporin-4 in fast-twitch fibers of mammalian skeletal muscle.
    Frigeri A; Nicchia GP; Verbavatz JM; Valenti G; Svelto M
    J Clin Invest; 1998 Aug; 102(4):695-703. PubMed ID: 9710437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular pathology of the skeletal muscle sodium channel.
    Barchi RL
    Annu Rev Physiol; 1995; 57():355-85. PubMed ID: 7778872
    [No Abstract]   [Full Text] [Related]  

  • 15. Adaptation of skeletal muscle to increased neuromuscular activity as induced by chronic low frequency stimulation.
    Pette D
    Scand J Rehabil Med Suppl; 1994; 30():7-18. PubMed ID: 7886430
    [No Abstract]   [Full Text] [Related]  

  • 16. Rapid protein kinase C-dependent reduction of rat skeletal muscle voltage-gated sodium channels by ciliary neurotrophic factor.
    Talon S; Giroux-Metges MA; Pennec JP; Guillet C; Gascan H; Gioux M
    J Physiol; 2005 Jun; 565(Pt 3):827-41. PubMed ID: 15831538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unravelling the mysteries of the exercise pressor reflex at the cellular level.
    Mitchell JH; Smith SA
    J Physiol; 2008 Jul; 586(13):3025-6. PubMed ID: 18593887
    [No Abstract]   [Full Text] [Related]  

  • 18. Plasticity of monkey triceps muscle fibers in microgravity conditions.
    Kischel P; Stevens L; Montel V; Picquet F; Mounier Y
    J Appl Physiol (1985); 2001 May; 90(5):1825-32. PubMed ID: 11299273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Action potential generation in rat slow- and fast-twitch muscles.
    Wood SJ; Slater CR
    J Physiol; 1995 Jul; 486 ( Pt 2)(Pt 2):401-10. PubMed ID: 7473206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-channel basis of slow inactivation of Na+ channels in rat skeletal muscle.
    Ruff RL
    Am J Physiol; 1996 Sep; 271(3 Pt 1):C971-81. PubMed ID: 8843728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.