These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 9617948)
1. Tissue engineering of a bioartificial renal tubule. MacKay SM; Funke AJ; Buffington DA; Humes HD ASAIO J; 1998; 44(3):179-83. PubMed ID: 9617948 [TBL] [Abstract][Full Text] [Related]
2. Tissue engineering of a bioartificial renal tubule assist device: in vitro transport and metabolic characteristics. Humes HD; MacKay SM; Funke AJ; Buffington DA Kidney Int; 1999 Jun; 55(6):2502-14. PubMed ID: 10354300 [TBL] [Abstract][Full Text] [Related]
3. Research into the development of a wearable bioartificial kidney with a continuous hemofilter and a bioartificial tubule device using tubular epithelial cells. Saito A Artif Organs; 2004 Jan; 28(1):58-63. PubMed ID: 14720290 [TBL] [Abstract][Full Text] [Related]
4. Design engineering of a bioartificial renal tubule cell therapy device. Nikolovski J; Gulari E; Humes HD Cell Transplant; 1999; 8(4):351-64. PubMed ID: 10478715 [TBL] [Abstract][Full Text] [Related]
5. Effects of cardiac glycosides on sodium pump expression and function in LLC-PK1 and MDCK cells. Liu J; Periyasamy SM; Gunning W; Fedorova OV; Bagrov AY; Malhotra D; Xie Z; Shapiro JI Kidney Int; 2002 Dec; 62(6):2118-25. PubMed ID: 12427136 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of Na+ active transport and morphological changes for bioartificial renal tubule cell device using Madin-Darby canine kidney cells. Fujita Y; Kakuta T; Asano M; Itoh J; Sakabe K; Tokimasa T; Saito A Tissue Eng; 2002 Feb; 8(1):13-24. PubMed ID: 11886650 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of long-term transport ability of a bioartificial renal tubule device using LLC-PK1 cells. Ozgen N; Terashima M; Aung T; Sato Y; Isoe C; Kakuta T; Saito A Nephrol Dial Transplant; 2004 Sep; 19(9):2198-207. PubMed ID: 15266032 [TBL] [Abstract][Full Text] [Related]
8. Development of bioartificial renal tubule devices with lifespan-extended human renal proximal tubular epithelial cells. Sanechika N; Sawada K; Usui Y; Hanai K; Kakuta T; Suzuki H; Kanai G; Fujimura S; Yokoyama TA; Fukagawa M; Terachi T; Saito A Nephrol Dial Transplant; 2011 Sep; 26(9):2761-9. PubMed ID: 21421594 [TBL] [Abstract][Full Text] [Related]
9. Present status and perspective of the development of a bioartificial kidney for chronic renal failure patients. Saito A; Aung T; Sekiguchi K; Sato Y Ther Apher Dial; 2006 Aug; 10(4):342-7. PubMed ID: 16911187 [TBL] [Abstract][Full Text] [Related]
10. Present status and perspectives of bioartificial kidneys. Saito A; Aung T; Sekiguchi K; Sato Y; Vu DM; Inagaki M; Kanai G; Tanaka R; Suzuki H; Kakuta T J Artif Organs; 2006; 9(3):130-5. PubMed ID: 16998696 [TBL] [Abstract][Full Text] [Related]
11. Active lucifer yellow secretion in renal proximal tubule: evidence for organic anion transport system crossover. Masereeuw R; Moons MM; Toomey BH; Russel FG; Miller DS J Pharmacol Exp Ther; 1999 May; 289(2):1104-11. PubMed ID: 10215693 [TBL] [Abstract][Full Text] [Related]
12. Cellular control of membrane permeability. Implications for a bioartificial renal tubule. Ip TK; Aebischer P; Galletti PM ASAIO Trans; 1988; 34(3):351-5. PubMed ID: 3196532 [TBL] [Abstract][Full Text] [Related]
13. Na/K-ATPase endocytosis couples pumping and leaking activities in renal epithelial cells: a hypothesis. Liu J Cell Mol Biol (Noisy-le-grand); 2006 Dec; 52(8):97-104. PubMed ID: 17535743 [TBL] [Abstract][Full Text] [Related]
14. Cell type-specific acquired protection from crystal adherence by renal tubule cells in culture. Verkoelen CF; van der Boom BG; Kok DJ; Houtsmuller AB; Visser P; Schröder FH; Romijn JC Kidney Int; 1999 Apr; 55(4):1426-33. PubMed ID: 10201007 [TBL] [Abstract][Full Text] [Related]
15. Development of bioartificial kidneys. Saito A Nephrology (Carlton); 2003 Oct; 8 Suppl():S10-5. PubMed ID: 15012685 [TBL] [Abstract][Full Text] [Related]
16. Bioartificial kidney. II. A convective flow model of a hollow fiber bioartificial renal tubule. Moussy Y Biotechnol Bioeng; 2000 Apr; 68(2):153-9. PubMed ID: 10712731 [TBL] [Abstract][Full Text] [Related]
17. Transport functions in a bioartificial kidney under uremic conditions. Uludag H; Ip TK; Aebischer P Int J Artif Organs; 1990 Feb; 13(2):93-7. PubMed ID: 2347662 [TBL] [Abstract][Full Text] [Related]
18. Locally formed dopamine inhibits Na+-K+-ATPase activity in rat renal cortical tubule cells. Seri I; Kone BC; Gullans SR; Aperia A; Brenner BM; Ballermann BJ Am J Physiol; 1988 Oct; 255(4 Pt 2):F666-73. PubMed ID: 2845809 [TBL] [Abstract][Full Text] [Related]
19. The relationship between renal metabolism and proximal tubule transport during ontogeny. Barac-Nieto M; Spitzer A Pediatr Nephrol; 1988 Jul; 2(3):356-67. PubMed ID: 3153041 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms of dopamine effects on Na-K-ATPase activity in Madin-Darby canine kidney (MDCK) epithelial cells. Shahedi M; Laborde K; Azimi S; Hamdani S; Sachs C Pflugers Arch; 1995 Apr; 429(6):832-40. PubMed ID: 7541525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]