These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 9617952)

  • 21. Polydioxanone and polypropylene suture material in free internal mammary artery graft anastomoses.
    Aarnio P; Harjula A; Lehtola A; Sariola H; Mattila S
    J Thorac Cardiovasc Surg; 1988 Nov; 96(5):741-5. PubMed ID: 3141723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some mechanical properties of polypropylene sutures: relationship to the use of polypropylene in vascular surgery.
    Dobrin PB
    J Surg Res; 1988 Dec; 45(6):568-73. PubMed ID: 3184931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluating Alternative Materials for the Treatment of Stress Urinary Incontinence and Pelvic Organ Prolapse: A Comparison of the In Vivo Response to Meshes Implanted in Rabbits.
    Roman S; Urbánková I; Callewaert G; Lesage F; Hillary C; Osman NI; Chapple CR; Deprest J; MacNeil S
    J Urol; 2016 Jul; 196(1):261-9. PubMed ID: 26880411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental studies with absorbable and nonabsorbable sutures in infected canine arterial anastomoses.
    Torsello GB; Sandmann W; Lenz W; Rosin H
    J Vasc Surg; 1986 Jan; 3(1):135-9. PubMed ID: 3079839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparison of a new polypropylene suture with Prolene.
    Chu CC; Pratt L; Zhang L; Hsu A; Chu A
    J Appl Biomater; 1993; 4(2):169-81. PubMed ID: 10148624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The myth: in vivo degradation of polypropylene-based meshes.
    Thames SF; White JB; Ong KL
    Int Urogynecol J; 2017 Feb; 28(2):285-297. PubMed ID: 27600700
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thrombogenicity of different suture materials as revealed by scanning electron microscopy.
    Dahlke H; Dociu N; Thurau K
    J Biomed Mater Res; 1980 May; 14(3):251-68. PubMed ID: 7364788
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of the suture diameter on the tensile strength of polypropylene monofilaments and its relationship to the USP specification.
    Kusy RP; Whitley JQ
    J Biomed Mater Res; 1984 Sep; 18(7):781-7. PubMed ID: 6544778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo oxidative degradation of polypropylene pelvic mesh.
    Imel A; Malmgren T; Dadmun M; Gido S; Mays J
    Biomaterials; 2015 Dec; 73():131-41. PubMed ID: 26408998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiovascular sutures as assessed by scanning electron microscopy.
    Roy J; Guidoin R; Cardou A; Blais P; Thériault Y; Marois M; Noël HP; Gosselin C; Gérardin H
    Scan Electron Microsc; 1980; (3):203-10. PubMed ID: 6997982
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved growth with bioabsorbable sutures in both high- and low-pressure zones.
    von Segesser LK; Lachat M; Duewell S; Gianom D; Turina MI
    Ann Thorac Surg; 1996 Oct; 62(4):1045-9; discussion 1049-50. PubMed ID: 8823088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An evaluation of ultrastrong polyethylene fiber as an ophthalmic suture.
    Cohan BE; Leenslag JW; Miles J; Pennings AJ
    Arch Ophthalmol; 1985 Dec; 103(12):1816-21. PubMed ID: 3907604
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and thermal properties of polypropylene mesh used in treatment of stress urinary incontinence.
    Afonso JS; Jorge RM; Martins PS; Soldi Mda S; Alves OL; Patricio B; Mascarenhas T; Sartori MG; Girao MJ
    Acta Bioeng Biomech; 2009; 11(3):27-33. PubMed ID: 20131747
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vivo characterization of a fluoropassivated gelatin-impregnated polyester mesh for hernia repair.
    Soares BM; Guidoin RG; Marois Y; Martin L; King MW; Laroche G; Zhang Z; Charara J; Girard JF
    J Biomed Mater Res; 1996 Nov; 32(3):293-305. PubMed ID: 8897134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of a new polypropylene-based suture: plasma grafting, surface treatment, characterization, and biocompatibility studies.
    Saxena S; Ray AR; Kapil A; Pavon-Djavid G; Letourneur D; Gupta B; Meddahi-Pellé A
    Macromol Biosci; 2011 Mar; 11(3):373-82. PubMed ID: 21104877
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unique performance characteristics of Novafil.
    Rodeheaver GT; Borzelleca DC; Thacker JG; Edlich RF
    Surg Gynecol Obstet; 1987 Mar; 164(3):230-6. PubMed ID: 3547720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Histologic evaluation of tissue reactivity and absorption in response to a new synthetic fluorescent pigmented polypropylene suture material in rats.
    Beardsley SL; Smeak DD; Weisbrode SE
    Am J Vet Res; 1995 Sep; 56(9):1248-52. PubMed ID: 7486407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abdominal wound closure. A comparison of polydioxanone, polypropylene, and Teflon-coated braided Dacron sutures.
    Kon ND; Meredith JW; Poole GV; Martin MB; Kawamoto E; Myers RT
    Am Surg; 1984 Oct; 50(10):549-51. PubMed ID: 6237599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation, characterization and properties of nano-hydroxyapatite/polypropylene carbonate biocomposite.
    Liao J; Li Y; Zou Q; Duan X; Yang Z; Xie Y; Liu H
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():285-91. PubMed ID: 27040221
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Suture surface and suture strength of polypropylene monofilaments].
    Semjonow A; Brandt M; Reul H; Rathert P
    Biomed Tech (Berl); 1993; 38(1-2):21-4. PubMed ID: 8461445
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.