These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9619424)

  • 81. Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution.
    Fusconi A; Gallo C; Camusso W
    Mutat Res; 2007 Aug; 632(1-2):9-19. PubMed ID: 17556012
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Differential uptake, partitioning and transfer of Cd and Zn in the soil-pea plant-aphid system.
    Green ID; Tibbett M
    Environ Sci Technol; 2008 Jan; 42(2):450-5. PubMed ID: 18284145
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Genotypic variation of the response to cadmium toxicity in Pisum sativum L.
    Metwally A; Safronova VI; Belimov AA; Dietz KJ
    J Exp Bot; 2005 Jan; 56(409):167-78. PubMed ID: 15533881
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Induction of glutathione transferase activity in wheat and pea seedlings by cadmium.
    Uotila M; Aioub AA; offlner G; Kómíves T; Brunold C
    Acta Biol Hung; 1994; 45(1):11-6. PubMed ID: 7740894
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Initiation of nitric oxide (NO) synthesis in roots of etiolated seedlings of pea (Pisum sativum L.) under the influence of nitrogen-containing compounds.
    Glyan'ko AK
    Biochemistry (Mosc); 2013 May; 78(5):471-6. PubMed ID: 23848149
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil.
    Mukherjee A; Peralta-Videa JR; Bandyopadhyay S; Rico CM; Zhao L; Gardea-Torresdey JL
    Metallomics; 2014 Jan; 6(1):132-8. PubMed ID: 24190632
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Chromium effect on ROS generation and detoxification in pea (Pisum sativum) leaf chloroplasts.
    Pandey V; Dixit V; Shyam R
    Protoplasma; 2009 Jul; 236(1-4):85-95. PubMed ID: 19582547
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Does specific parameterization of WHAM improve the prediction of copper competitive binding and toxicity on plant roots?
    Guigues S; Bravin MN; Garnier C; Doelsch E
    Chemosphere; 2017 Mar; 170():225-232. PubMed ID: 27998818
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Isolation and Structural Studies of Mitochondria from Pea Roots.
    Vishwakarma A; Gupta KJ
    Methods Mol Biol; 2017; 1670():87-95. PubMed ID: 28871538
    [TBL] [Abstract][Full Text] [Related]  

  • 90. [Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants].
    Vinogradova AP; Lebedeva MA; Lutova LA
    Genetika; 2015 Jan; 51(1):54-62. PubMed ID: 25857193
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Kinetic properties of a micronutrient transporter from Pisum sativum indicate a primary function in Fe uptake from the soil.
    Cohen CK; Garvin DF; Kochian LV
    Planta; 2004 Mar; 218(5):784-92. PubMed ID: 14648120
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Lead induces oxidative stress in Pisum sativum plants and changes the levels of phytohormones with antioxidant role.
    Dias MC; Mariz-Ponte N; Santos C
    Plant Physiol Biochem; 2019 Apr; 137():121-129. PubMed ID: 30772622
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Cr(VI) induces DNA damage, cell cycle arrest and polyploidization: a flow cytometric and comet assay study in Pisum sativum.
    Rodriguez E; Azevedo R; Fernandes P; Santos C
    Chem Res Toxicol; 2011 Jul; 24(7):1040-7. PubMed ID: 21667992
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Zinc Oxide Nanoparticles Affect Early Seedlings' Growth and Polar Metabolite Profiles of Pea (
    Stałanowska K; Szablińska-Piernik J; Okorski A; Lahuta LB
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834440
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Introduction of plant and fungal genes into pea (Pisum sativum L.) hairy roots reduces their ability to produce pisatin and affects their response to a fungal pathogen.
    Wu Q; VanEtten HD
    Mol Plant Microbe Interact; 2004 Jul; 17(7):798-804. PubMed ID: 15242174
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Markers of resistance to pea aphid,
    Nikolova IM
    J Environ Sci Health B; 2024; 59(2):37-49. PubMed ID: 38088334
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum.
    Cheng W; Zhang L; Jiao C; Su M; Yang T; Zhou L; Peng R; Wang R; Wang C
    Plant Physiol Biochem; 2013 Sep; 70():278-86. PubMed ID: 23800663
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Flow cytometry, sorting and immunocharacterization with proliferating cell nuclear antigen of cycling and non-cycling cells in synchronized pea root tips.
    Onelli E; Citterio S; O'Connor JE; Levi M; Sgorbati S
    Planta; 1997; 202(2):188-95. PubMed ID: 9202493
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Gravitropic response and circumnutation in pea (Pisum sativum) seedling roots.
    Kim HJ; Kobayashi A; Fujii N; Miyazawa Y; Takahashi H
    Physiol Plant; 2016 May; 157(1):108-18. PubMed ID: 26565659
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Changes in calcium signalling, gravitropism, and statocyte ultrastructure in pea roots induced by calcium channel blockers.
    Belyavskaya NA
    J Gravit Physiol; 2004 Jul; 11(2):P209-10. PubMed ID: 16240511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.