BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 9619433)

  • 21. Shear strength of the cement metal interface--an experimental study.
    Müller RT; Schürmann N
    Arch Orthop Trauma Surg; 1999; 119(3-4):133-8. PubMed ID: 10392505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation.
    Aghyarian S; Rodriguez LC; Chari J; Bentley E; Kosmopoulos V; Lieberman IH; Rodrigues DC
    J Biomater Appl; 2014 Nov; 29(5):688-98. PubMed ID: 25085810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improvement of fatigue properties of poly(methyl methacrylate) bone cement by means of plasma surface treatment of fillers.
    Kim HY; Yasuda HK
    J Biomed Mater Res; 1999; 48(2):135-42. PubMed ID: 10331906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone.
    Boger A; Bisig A; Bohner M; Heini P; Schneider E
    J Biomater Sci Polym Ed; 2008; 19(9):1125-42. PubMed ID: 18727856
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dependence of in vitro fatigue properties of PMMA bone cement on the polydispersity index of its powder.
    Lewis G; Li Y
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):94-101. PubMed ID: 19878906
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads.
    Boger A; Bohner M; Heini P; Schwieger K; Schneider E
    Acta Biomater; 2008 Nov; 4(6):1688-93. PubMed ID: 18678533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flexible fiber-reinforced composites with improved interfacial adhesion by mussel-inspired polydopamine and poly(methyl methacrylate) coating.
    Yi M; Sun H; Zhang H; Deng X; Cai Q; Yang X
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():742-9. PubMed ID: 26478367
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioactive bone cements.
    Harper EJ
    Proc Inst Mech Eng H; 1998; 212(2):113-20. PubMed ID: 9612002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of centrifugation and titanium fiber reinforcement on fatigue failure mechanisms in poly(methyl methacrylate) bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    J Biomed Mater Res; 1995 Mar; 29(3):299-307. PubMed ID: 7615581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modified PMMA cements for a hydrolysis resistant metal-polymer interface in orthopaedic applications.
    Gbureck U; Grübel S; Thull R; Barralet JE
    Acta Biomater; 2005 Nov; 1(6):671-6. PubMed ID: 16701848
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study on the poly(methyl methacrylate-acrylic acid)/calcium phosphate cement composite bound by chelation with enhanced water absorption and biomechanical properties.
    Chen L; Zhang S; Zhang B; Liang Q; Luo D; Yu X; Yao B; Zhao K; Yang Z; Tang Y; Wu Z
    J Mech Behav Biomed Mater; 2023 Nov; 147():106149. PubMed ID: 37782989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short- and long-term effects of vertebroplastic bone cement on cancellous bone.
    Quan R; Ni Y; Zhang L; Xu J; Zheng X; Yang D
    J Mech Behav Biomed Mater; 2014 Jul; 35():102-10. PubMed ID: 24762857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical and degradation properties of poly(methyl methacrylate) cement/borate bioactive glass composites.
    Cole KA; Funk GA; Rahaman MN; McIff TE
    J Biomed Mater Res B Appl Biomater; 2020 Oct; 108(7):2765-2775. PubMed ID: 32170915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surface and chemical properties of surface-modified UHMWPE powder and mechanical and thermal properties of it impregnated PMMA bone cement, III: effect of various ratios of initiator/inhibitor on the surface modification of UHMWPE powder.
    Yang DH; Yoon GH; Kim SH; Rhee JM; Kim YS; Khang G
    J Biomater Sci Polym Ed; 2005; 16(9):1121-38. PubMed ID: 16231603
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In-vitro biocompatibility, bioactivity, and mechanical strength of PMMA-PCL polymer containing fluorapatite and graphene oxide bone cements.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Hamzah E
    J Mech Behav Biomed Mater; 2018 Jun; 82():257-267. PubMed ID: 29627737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interfacial tensile strength between polymethylmethacrylate-based bioactive bone cements and bone.
    Kamimura M; Tamura J; Shinzato S; Kawanabe K; Neo M; Kokubo T; Nakamura T
    J Biomed Mater Res; 2002 Sep; 61(4):564-71. PubMed ID: 12115446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Release of zirconia nanoparticles at the metal stem-bone cement interface in implant loosening of total hip replacements.
    Schunck A; Kronz A; Fischer C; Buchhorn GH
    Acta Biomater; 2016 Feb; 31():412-424. PubMed ID: 26612414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-draw PAN-PMMA nanofiber reinforced and toughened Bis-GMA dental restorative composite.
    Sun W; Cai Q; Li P; Deng X; Wei Y; Xu M; Yang X
    Dent Mater; 2010 Sep; 26(9):873-80. PubMed ID: 20579722
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of ageing effects on thermal and mechanical properties of PMMA-based bone cement for THA revision surgery.
    Reulbach M; Evers P; Emonde C; Behnsen H; Nürnberger F; Windhagen H; Jakubowitz E
    J Mech Behav Biomed Mater; 2023 Dec; 148():106218. PubMed ID: 37931550
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of polymethylmethacrylate/tricalcium silicate composite cement for orthopedic application.
    Wei Y; Baskaran N; Wang HY; Su YC; Nabilla SC; Chung RJ
    Biomed J; 2023 Jun; 46(3):100540. PubMed ID: 35640805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.