BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 9619433)

  • 41. The effect of a silane coupling agent on the bond strength of bone cement and cobalt-chrome alloy.
    Yerby SA; Paal AF; Young PM; Beaupré GS; Ohashi KL; Goodman SB
    J Biomed Mater Res; 2000 Jan; 49(1):127-33. PubMed ID: 10559755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of laboratory procedures and thermocycling on the shear bond strength of resin-metal bonding systems.
    Kim JY; Pfeiffer P; Niedermeier W
    J Prosthet Dent; 2003 Aug; 90(2):184-9. PubMed ID: 12886212
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fracture toughness of titanium-cement interfaces: effects of fibers and loading angles.
    Khandaker M; Utsaha KC; Morris T
    Int J Nanomedicine; 2014; 9():1689-97. PubMed ID: 24729704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Preparation and characterization of injectable PMMA-strontium-substituted bioactive glass bone cement composites.
    Goñi I; Rodríguez R; García-Arnáez I; Parra J; Gurruchaga M
    J Biomed Mater Res B Appl Biomater; 2018 Apr; 106(3):1245-1257. PubMed ID: 28580716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Flow intrusion characteristics and fracture properties of titanium-fibre-reinforced bone cement.
    Topoleski LD; Ducheyne P; Cuckler JM
    Biomaterials; 1998 Sep; 19(17):1569-77. PubMed ID: 9830982
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved orthopaedic bone cement formulations based on rubber toughening.
    Puckett AD; Roberts B; Bu L; Mays JW
    Crit Rev Biomed Eng; 2000; 28(3 - 4):457-61. PubMed ID: 11108215
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of modification degree of nanohydroxyapatite on biocompatibility and mechanical property of injectable poly(methyl methacrylate)-based bone cement.
    Quan C; Tang Y; Liu Z; Rao M; Zhang W; Liang P; Wu N; Zhang C; Shen H; Jiang Q
    J Biomed Mater Res B Appl Biomater; 2016 Apr; 104(3):576-84. PubMed ID: 25953071
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of processing conditions on the properties of poly(methyl methacrylate) fibers.
    Wright DD; Lautenschlager EP; Gilbert JL
    J Biomed Mater Res; 2002; 63(2):152-60. PubMed ID: 11870648
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CNT and rGO reinforced PMMA based bone cement for fixation of load bearing implants: Mechanical property and biological response.
    Pahlevanzadeh F; Bakhsheshi-Rad HR; Kharaziha M; Kasiri-Asgarani M; Omidi M; Razzaghi M; Ismail AF; Sharif S; RamaKrishna S; Berto F
    J Mech Behav Biomed Mater; 2021 Apr; 116():104320. PubMed ID: 33571842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanical properties and osteoconductivity of new bioactive composites consisting of partially crystallized glass beads and poly(methyl methacrylate).
    Shinzato S; Nakamura T; Ando K; Kokubo T; Kitamura Y
    J Biomed Mater Res; 2002 Jun; 60(4):556-63. PubMed ID: 11948514
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Novel Composite PMMA-based Bone Cement with Reduced Potential for Thermal Necrosis.
    Lv Y; Li A; Zhou F; Pan X; Liang F; Qu X; Qiu D; Yang Z
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11280-5. PubMed ID: 25966790
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PMMA brush-containing two-solution bone cement: preparation, characterization, and influence of composition on cement properties.
    Rodrigues DC; Gilbert JL; Bader RA; Hasenwinkel JM
    J Mater Sci Mater Med; 2014 Jan; 25(1):79-89. PubMed ID: 24068542
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of the particle release of porous PMMA cements during curing.
    Beck S; Boger A
    Acta Biomater; 2009 Sep; 5(7):2503-7. PubMed ID: 19409868
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fabrication of reactive poly(vinyl alcohol) membranes for prevention of bone cement leakage.
    Inoue M; Sakane M; Taguchi T
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1786-91. PubMed ID: 24700680
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biological and mechanical properties of PMMA-based bioactive bone cements.
    Mousa WF; Kobayashi M; Shinzato S; Kamimura M; Neo M; Yoshihara S; Nakamura T
    Biomaterials; 2000 Nov; 21(21):2137-46. PubMed ID: 10985486
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reinforcement of bone cement using zirconia fibers with and without acrylic coating.
    Kotha S; Li C; Schmid S; Mason J
    J Biomed Mater Res A; 2009 Mar; 88(4):898-906. PubMed ID: 18384160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impact of plasma treatment of PMMA-based CAD/CAM blanks on surface properties as well as on adhesion to self-adhesive resin composite cements.
    Liebermann A; Keul C; Bähr N; Edelhoff D; Eichberger M; Roos M; Stawarczyk B
    Dent Mater; 2013 Sep; 29(9):935-44. PubMed ID: 23880323
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contamination of polyethylene cups with polymethyl methacrylate particles: an experimental study.
    Kesteris U; Carlsson L; Haraldsson C; Lausmaa J; Lidgren L; Onnerfält R; Wingstrand H
    J Arthroplasty; 2001 Oct; 16(7):905-8. PubMed ID: 11607908
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revision of cemented fixation and cement-bone interface strength.
    Rosenstein A; MacDonald W; Iliadis A; McLardy-Smith P
    Proc Inst Mech Eng H; 1992; 206(1):47-9. PubMed ID: 1418194
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic effect of HA and BMP-2 mimicking peptide on the bioactivity of HA/PMMA bone cement.
    Liu Z; Tang Y; Kang T; Rao M; Li K; Wang Q; Quan C; Zhang C; Jiang Q; Shen H
    Colloids Surf B Biointerfaces; 2015 Jul; 131():39-46. PubMed ID: 25948316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.