BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9619633)

  • 21. Properties of enzymatically isolated skeletal fibres from mice with muscular dystrophy.
    Head SI; Stephenson DG; Williams DA
    J Physiol; 1990 Mar; 422():351-67. PubMed ID: 2352184
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low dose formoterol administration improves muscle function in dystrophic mdx mice without increasing fatigue.
    Harcourt LJ; Schertzer JD; Ryall JG; Lynch GS
    Neuromuscul Disord; 2007 Jan; 17(1):47-55. PubMed ID: 17134898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chronic clenbuterol treatment compromises force production without directly altering skeletal muscle contractile machinery.
    Py G; Ramonatxo C; Sirvent P; Sanchez AM; Philippe AG; Douillard A; Galbès O; Lionne C; Bonnieu A; Chopard A; Cazorla O; Lacampagne A; Candau RB
    J Physiol; 2015 Apr; 593(8):2071-84. PubMed ID: 25656230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol.
    Ryall JG; Gregorevic P; Plant DR; Sillence MN; Lynch GS
    Am J Physiol Regul Integr Comp Physiol; 2002 Dec; 283(6):R1386-94. PubMed ID: 12388476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myosin isoenzymes in fast-twitch and slow-twitch muscles of normal and dystrophic mice.
    Fitzsimons RB; Hoh JF
    J Physiol; 1983 Oct; 343():539-50. PubMed ID: 6227740
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exercise and clenbuterol as strategies to decrease the progression of muscular dystrophy in mdx mice.
    Dupont-Versteegden EE
    J Appl Physiol (1985); 1996 Mar; 80(3):734-41. PubMed ID: 8964730
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of dy/dy dystrophic diaphragm by 3,4-diaminopyridine.
    van Lunteren E; Moyer M
    Muscle Nerve; 2002 Jul; 26(1):71-8. PubMed ID: 12115951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clenbuterol has a greater influence on untrained than on previously trained skeletal muscle in rats.
    Murphy RJ; Béliveau L; Seburn KL; Gardiner PF
    Eur J Appl Physiol Occup Physiol; 1996; 73(3-4):304-10. PubMed ID: 8781861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic and physiologic characteristics of skeletal muscle determine its response to clenbuterol treatment.
    Sundal S; Katoch SS; Sharma S
    Indian J Biochem Biophys; 2006 Jun; 43(3):160-6. PubMed ID: 16967905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of beta 2-agonist administration and exercise on contractile activation of skeletal muscle fibers.
    Lynch GS; Hayes A; Campbell SP; Williams DA
    J Appl Physiol (1985); 1996 Oct; 81(4):1610-8. PubMed ID: 8904577
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of leukemia inhibitory factor on rat skeletal muscles are modulated by clenbuterol.
    Gregorevic P; Williams DA; Lynch GS
    Muscle Nerve; 2002 Feb; 25(2):194-201. PubMed ID: 11870686
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isotonic fatigue in laminin alpha2-deficient dy/dy dystrophic mouse diaphragm.
    Pollarine J; Moyer M; Van Lunteren E
    Muscle Nerve; 2007 Nov; 36(5):672-8. PubMed ID: 17661374
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contractile properties of skinned muscle fibres from young and adult normal and dystrophic (mdx) mice.
    Williams DA; Head SI; Lynch GS; Stephenson DG
    J Physiol; 1993 Jan; 460():51-67. PubMed ID: 8487206
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A physiological level of clenbuterol does not prevent atrophy or loss of force in skeletal muscle of old rats.
    Chen KD; Alway SE
    J Appl Physiol (1985); 2000 Aug; 89(2):606-12. PubMed ID: 10926644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of clenbuterol on contractile and biochemical properties of skeletal muscle.
    Dodd SL; Powers SK; Vrabas IS; Criswell D; Stetson S; Hussain R
    Med Sci Sports Exerc; 1996 Jun; 28(6):669-76. PubMed ID: 8784754
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contractile efficiency of dystrophic mdx mouse muscle: in vivo and ex vivo assessment of adaptation to exercise of functional end points.
    Capogrosso RF; Mantuano P; Cozzoli A; Sanarica F; Massari AM; Conte E; Fonzino A; Giustino A; Rolland JF; Quaranta A; De Bellis M; Camerino GM; Grange RW; De Luca A
    J Appl Physiol (1985); 2017 Apr; 122(4):828-843. PubMed ID: 28057817
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium and strontium activation of single skinned muscle fibres of normal and dystrophic mice.
    Fink RH; Stephenson DG; Williams DA
    J Physiol; 1986 Apr; 373():513-25. PubMed ID: 3746681
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exercise effect on contractile properties of skeletal muscle in mouse muscular dystrophy.
    Taylor RG; Fowler WM; Doerr L
    Arch Phys Med Rehabil; 1976 Apr; 57(4):174-80. PubMed ID: 1267593
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Systemic administration of IGF-I enhances oxidative status and reduces contraction-induced injury in skeletal muscles of mdx dystrophic mice.
    Schertzer JD; Ryall JG; Lynch GS
    Am J Physiol Endocrinol Metab; 2006 Sep; 291(3):E499-505. PubMed ID: 16621899
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inotrophic effects of the K(+) channel blocker TEA on dystrophic (mdx and dy/dy) mouse diaphragm.
    van Lunteren E; Manubay P
    Respir Physiol; 2001 Apr; 125(3):249-54. PubMed ID: 11282391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.