These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 9620008)

  • 1. The CSF accumulator: its role in the central nervous system and implications for advancing hydrocephalus shunt technology.
    Magram G
    Pediatr Neurosurg; 1997 Nov; 27(5):277. PubMed ID: 9620008
    [No Abstract]   [Full Text] [Related]  

  • 2. The CSF accumulator: its role in the central nervous system and implications for advancing hydrocephalus shunt technology.
    Magram G; Liakos AM
    Pediatr Neurosurg; 1997 May; 26(5):236-46. PubMed ID: 9440493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CSF accumulator.
    Magram G; Liakos AM
    Neurol Res; 2000 Jan; 22(1):4-18. PubMed ID: 10672575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebrospinal fluid flow through an implanted shunt.
    Magram G; Liakos AM
    Neurol Res; 2000 Jan; 22(1):43-50. PubMed ID: 10672580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Evolution of Cerebrospinal Fluid Shunts: Advances in Technology and Technique.
    Tomei KL
    Pediatr Neurosurg; 2017; 52(6):369-380. PubMed ID: 28704811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A search for determinants of cerebrospinal fluid shunt survival: retrospective analysis of a 14-year institutional experience.
    Piatt JH; Carlson CV
    Pediatr Neurosurg; 1993; 19(5):233-41; discussion 242. PubMed ID: 8398847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of antibiotic-impregnated shunt catheters in decreasing the incidence of shunt infection in the treatment of hydrocephalus.
    Sciubba DM; Stuart RM; McGirt MJ; Woodworth GF; Samdani A; Carson B; Jallo GI
    J Neurosurg; 2005 Aug; 103(2 Suppl):131-6. PubMed ID: 16370278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventriculo-subgaleal shunt: step-by-step technical note.
    Hansasuta A; Boongird A
    J Med Assoc Thai; 2007 Mar; 90(3):473-8. PubMed ID: 17427523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventriculosubgaleal shunts for posthemorrhagic hydrocephalus in premature infants.
    Willis BK; Kumar CR; Wylen EL; Nanda A
    Pediatr Neurosurg; 2005; 41(4):178-85. PubMed ID: 16088252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CSF shunts 50 years on--past, present and future.
    Drake JM; Kestle JR; Tuli S
    Childs Nerv Syst; 2000 Nov; 16(10-11):800-4. PubMed ID: 11151733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monte Carlo simulation of cerebrospinal fluid shunt failure and definition of instability among shunt-treated patients with hydrocephalus.
    Piatt JH; Cosgriff M
    J Neurosurg; 2007 Dec; 107(6 Suppl):474-8. PubMed ID: 18154016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro experiment for verification of the tandem shunt valve system: a novel method for treating hydrocephalus by flexibly controlling cerebrospinal fluid flow and intracranial pressure.
    Aihara Y; Shoji I; Okada Y
    J Neurosurg Pediatr; 2013 Jan; 11(1):43-7. PubMed ID: 23140212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Testing of central nervous system shunt devices.
    DiNovo JA; Tylka CR; March E
    J Clin Eng; 1991; 16(3):215-22. PubMed ID: 10111392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cerebrospinal fluid hydrodynamics following endoscopic third ventriculostomy for shunt-dependent noncommunicating hydrocephalus.
    Nishiyama K; Mori H; Tanaka R
    J Neurosurg; 2003 May; 98(5):1027-31. PubMed ID: 12744362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A closer look at the ventriculo-gallbladder shunt for the treatment of hydrocephalus.
    Novelli PM; Reigel DH
    Pediatr Neurosurg; 1997 Apr; 26(4):197-9. PubMed ID: 9436830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Failure of cerebrospinal fluid shunts: part I: Obstruction and mechanical failure.
    Browd SR; Ragel BT; Gottfried ON; Kestle JR
    Pediatr Neurol; 2006 Feb; 34(2):83-92. PubMed ID: 16458818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF shunt removal in children with hydrocephalus.
    Iannelli A; Rea G; Di Rocco C
    Acta Neurochir (Wien); 2005 May; 147(5):503-7; discussion 507. PubMed ID: 15838593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Failure of cerebrospinal fluid shunts: part II: overdrainage, loculation, and abdominal complications.
    Browd SR; Gottfried ON; Ragel BT; Kestle JR
    Pediatr Neurol; 2006 Mar; 34(3):171-6. PubMed ID: 16504785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus.
    Fulkerson DH; Vachhrajani S; Bohnstedt BN; Patel NB; Patel AJ; Fox BD; Jea A; Boaz JC
    J Neurosurg Pediatr; 2011 Feb; 7(2):147-51. PubMed ID: 21284459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.